실제 제작된 것과 설계할 파일을 비교하며 결정하는데 도움을 주는 기능으로 제작품의 측정 Data가 하나 이상 있어야 합니다.

최적화 설계

Wavelength (nm)	Reflectance (%)	Transmittance (%)	retest7.csv
400	40.204278	59.795722	
420	38.072043	61.927957	
440	29.585770	70.414230	Transmittance (%)
460	18.559006	81.440994	100 T
480	9.588409	90.411591	-
500	5.867516	94.132484	90
520	8.166622	91.833378	
540	14.317490	85.682510	80
560	21.684749	78.315251	70
580	28.630183	71.369817	
600	34.471615	65.528385	60
620	39.083738	60.916262	- -
640	42.548842	57.451158	" 50
660	45.009860	54.990140	-
680	46.611957	53.388043	-
700	47.487140	52.512860	

목표(측정) Data 준비

Design File 생성 (retest7_c.dds)

b- 1	retest7	′_c				- • •
<u>D</u> e:	sign	Context Notes				
Inc Rel	ident A ference	ngle (deg) (Wavelength (nm) 5	0.00 510.00			
	Layer	Material	Refractive Index	efractive Extinction Index Coefficient		Physical Thickness (nm)
	edium	Air	1.00000	0.00000		
	1	Ta205	2.14455	0.00000	0.16819971	40.00
	2	SiO2	1.46180	0.00000	0.25796510	90.00
	3	Ta205	2.14455	0.00000	0.16819971	40.00
▶	4	SiO2	1.46180	0.00000	0.25796510	90.00
	strate	Glass	1.52083	0.00000		

Reverse Engineer 시작

retest7_c: Transmittance

Reverse Engineer	×
Specify Substrate	
Enter the material used for the substrate and its thickness. The Substrate Thickness is only in Substrate is not Lossless. Also specify the medium in which the measurement was taken.	nportant when the
Substrate Material Glass Substrate Inickness (mm) 1.000 Measurement Medium Air ▼	
Cancel Add Measurem	nent
Add Measurement Wavelength Value Image: Constraint of the second seco	Choose <u>D</u> ata
	► Import Measurement — □ ×
	Template <pre></pre>
Adity i R LWP = 01 Eron LWP = 01 retest i retest	Select the rows containing the data that you wish to include /orightede C Include Selected Rows
retest1 retest2 retest3 retest3 retest7 = 71 ⇒ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wavelength (nm).Reflectance [%].Transmittance [%].Reflectance-Phase [deg].Trans 400, 40.2042/85307967, 59.7957216092033, 178.773373008727, 3.79404205992 420, 38.0720430880475, 61.9279569119525, 169.840281946348, 29.2480633236 440, 29.5857704155509, 70.4142295844491, 158.952404138893, 60.5729711346 460, 18.5590062758443, 81.4409937241557, 151.644771944337, 90.7115564537 480, 9.58840899203458, 90.4115910079654, 153.907928586398, 119.616081408 500, 5.86751571231828, 94.1324842876817, 174.313670756397, 147.447315363
retest7.csv	520, 8.16662200342667, 91.8333779965733, 163.602507218469, 173.256580002 540, 14.3174900489145, 85.6825099510855, 157.496397331519, 163.499925239 560, 21.6847491519903, 78.3152506480097, 159.309641060375, 142.877357707 580, 28.6301826793147, 71.3698173206853, 163.65563037214, 124.6021442536 600, 34.4716147743736, 65.5283852256264, 168.665976116317, 108.341559330 620, 39.0837380443344, 60.9162619556656, 173.734879989363, 93.7396239802 640, 42.5488420070818, 57.4511579929182, 178.65645448187, 80.50341397724 ×
	≤ Previous Next ≥ Cancel

```
Data에 Head Line이 있으면 " Exclude Selected Rows " 선택하고
```

해당 Row 클릭

₽	Import Measu	rement	-	_		×
Cł	oose the delimiter	between data columns				
C	Fixed Width	Comma Separated	🔿 Semi-Colon Se	parate	d	
С	Tab Separated	C Space Separated	C Other			
						^
►	400	40.2042783907967	59.7957216092033	178.7	7793730	0872
	420	38.0720430880475	61.9279569119525	-169.8	3402819	4634
	440	29.5857704155509	70.4142295844491	-158.9	9524041	3889:
	460	18.5590062758443	81.4409937241557	-151.6	6447719	4433
	480	9.58840899203458	90.4115910079654	-153.9	3079285	8639
	500	5.86751571231828	94.1324842876817	-174.3	3136707	5639
	520	8.16662200342667	91.8333779965733	163.6	6025072	1846:
	540	14.3174900489145	85.6825099510855	157.4	1963973	3151:
	560	21.6847491519903	78.3152508480097	159.3	3096410	6037!
	580	28.6301826793147	71.3698173206853	163.6	6556303	7214
	600	34.4716147743736	65.5283852256264	168.6	6697761	1631
	620	39.0837380443344	60.9162619556656	173.7	7348799	8936:
	640	42.5488420070818	57.4511579929182	178.6	6564544	8187
	660	45.0098601176988	54.9901398823012	-176.6	6163775	6865
•		10 011057000000	E0.0000400700000	170 (ĩ
		<u>≤</u> F	Previous	2	Car	ncel

파일 형식 선택

csv 파일인 경우 "Comma Separated"

R 또는 T data 선택

Column 속성 부여

Add Measurement

Design 파일과 측정된 Data의 그래프가 보임

Adjust(최적화) 실행

	Adjust	Result	ts Tools	Optic							
	Para	meters									
1	Con	trol Par	rameters								
			Reverse Engineer P	arameters							
		M	aterial <mark>L</mark> ayer <u>S</u> pect	rum M <u>a</u> terial Mo	dels <u>H</u> istory						
			Material	Thickness Action	Order	Density Action		Order	Inhomogeneity Action	Order	Adjust
			Ta205	Adjust	Constant	Adjust	Co	onstant	Not Used	Constant	Close
			Si02	Adjust	Constant	Adjust	Co	onstant	Not Used	Constant	
				Adjust	Constant	Adjust		onstant	Not Used	Constant	
						-					
							-				
			1	1	1	1	1				

디지크라식 CopyrightⓒAll Rights reserved . http://www.thinfilm.co.kr

×

2	Re	evers	e Eng	ineer Parar	neters		
ŀ	<u>1</u> ater	rial	Layer	Spectrum	Material Models	History	
	L	.ayer	Tł ,	nickness Action	Density Action	Inhomogeneity Action	Adjust
		1	Adjus	t	Adjust	Adjust	Class
		2	Adjus	t	Adjust	Adjust	
		3	Adjus	t	Adjust	Adjust	
		4	Adjus	t	Adjust	Adjust	
		All	Adjus	t	Adjust	Adjust	
[

2	Reverse Engineer Parameters			- • ×
M	taterial Layer Spectrum Mater	rial Models <u>H</u> istor	y	
	Spectrum Parameter	Action	Order	Adjust
	Wavelength	Not Used	Constant	
	Transmittance	Adjust	Constant	Close
	Reflectance	Not Used	Constant	CI036

Adjust 실행

retest1 <de></de>				
RMS Difference: 40.549 Design <u>1</u>: Transmittan	Range: 0.60839			
✓ Show Use Points ✓ Show Ignored Points	☐ Show Adjusted Measurements ✓ Show Adjusted Design	Incident Angle (deg) 0.00 Polarization P 💌	Cone Angle 0.00 Substrate Type Parallel 💌	

목표 값에 최적화된 설계 도출

-	Reverse Engineer Pa	arameters				
<u>M</u> a	terial <u>L</u> ayer <u>Spectr</u>	um Material Models <u>H</u> istory				
Γ	Material	Script Name	Action	Parameters	Material	Adjust
	Ta205		Not Used	Show	Create	Claus
▶	rematnk 🚽	<internal></internal>	Adjust	Show	Create	Liose
	SiO2		Not Used	Show	Create	
	All					
_						

Adjust 실행

🞽 retest1 <de></de>				
RMS Difference: 40.549	Range: 0.60839			
Design <u>1</u> : Transmittanc	ų			
✓ Show Use Points	Show Adjusted Measurements	Incident Angle (deg) 0.00	Cone Angle 0.00	
Show Ignored Points	✓ Show Adjusted Design	Polarization P 💌	Substrate Type Parallel	•

Adjust 완료

retest1 <de></de>				
RMS Difference: 40.49				
Design] <u>1</u> : Transmittan	ce			
Show Use Points	Show Adjusted Measurements	Incident Angle (deg) 0.00	Cone Angle 0.00	
Show Ignored Points	🔽 Show Adjusted Design	Polarization P	Substrate Type Parallel	•
Transmittance	(%)			
100				

측정돤 Data로 Adjust된 설계 완성

1	etest7_c	<\$>														
RM	S Differen	ce: 0.84142	2													
e	ign <u>1</u>	Transmittar	nce)													
	Median M	laterial Air		 Substrate 	e Thickness (n	nm) 1.000										
S	ubstrate M	laterial Gla	ass	•						٦						
	Туре	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness	Physical Thickness (nm)	Adjusted Optical Thickness	Adjusted Physical Thickness (nm)	S T Cł	stematic ickness ange (%)	Systematic Density Change	Systematic Inhomo- geneity	Random Thickness Change (%)	Random Density Change	Random Inhomo∙genei
•		Medium	Air													
		1	Ta205	2.14455	0.00000	0.16819971	40.00	0.42781426	80.31		4.11%	-0.0326	-0.4316	96.66%	1.9224	0.30
		2	SiO2	1.46180	0.00000	0.25796510	90.00	0.00005570	0.02		-53.89%	-0.2218	-0.2768	-46.09%	7.6230	1.05
		3	Ta205	2.14455	0.00000	0.16819971	40.00	0.34503254	111.92		4.11%	-0.0326	-0.4316	175.68%	-1.2410	-0.46
		4	SiD2	1.46180	0.00000	0.25796510	90.00	0.19463212	58.64		-53.89%	-0.2218	-0.2768	19.05%	10.6256	0.60
		Substrate	Glass													
		Medium	Air													
_				_												
_				_												
_				_												
-				-		0.0500000	200.00			_						

최적화된 설계 data 및 내용

*	Reverse Engineer Pa	arameters
<u>M</u> a	terial Layer Spectro	um Material Models History
	RMS Difference	Notes
	27.8696527357966	Starting Point
	27.8696527357966	
	27.8696527357966	
	27.5347739749763	Ta205 Thickness Adjust Density Adjust Inhomogeneity Adjust, Si02 Thickness Adjust Density
	27.2021313930993	
	19.3308341393202	Layer 1 Adjust Adjust Adjust, Layer 2 Adjust Adjust Adjust, Layer 3 Adjust Adjust Adjust, Layer 4
	12.9320080059463	
	10.2504733154663	Transmittance Adjust
	0.841424836269162	
	0.841424532208605	
	0.841424532208605	
►	0.841424532208605	
-		

100 C			
File	e Edit Link	Measurements	
	Open Open a Copy of.	Ctrl+O	Adjusted Design File 저장
	Open Material Open Reference. Close		
	New Job Open Job	B	
	Load Design	e:	retest7_result
	Save Save As	Ctrl+S ^{Tr}	
	Save Adjusted D	esign As _{ite}	모든 파일을 저장하고 닫는다.

retest7_result

₽ -	retest7_res	ult							
De	sign <u>C</u> on	text]	<u>N</u> otes						
Inc	ident Angle	(deg)	0.0	0					
Rel	ference Way	velengt	h (nm) 51 (0.00					
	Medium Type	Layer	Packing Density	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)	Me Thic (n
▶	Incident 🛩			Air	1.00000	0.00000			
		1	1.50000	Ta205	2.71682	0.00000	0.42781426	80.31	
		2	1.50000	SiD2	1.69270	0.00000	0.00005570	0.02	
		3	0.50000	Ta205	1.57227	0.00000	0.34503254	111.92	
		4	1.50000	SiO2	1.69270	0.00000	0.19463212	58.64	
	Parallel	5		Glass	1.52083	0.00000			
	Emergent			Air	1.00000	0.00000			
							0.96753462	250.89	

Plot

상기와 같이 구성이 안되있는 구 버전은 다음 페이지를 보세요..

Reverse Engineering

실제 제작된 것과 그 것을 디자인에 어떻게 반영해야 하는가를 결정하는데 도움을 주는 툴로 예상 디자인과 제작품의 측정된 Data가 필요합니다.

Reverse engineering은 한 단계 한 단계 기록이 되며 각 단계 별로 결과를 보면서 좀더 좋은 디자인을 결정 할 수가 있습니다.

제작품의 결과가 예상한 광학 성능을 주지 못하는 것은 공정 중 Random 에러가 있기 때문인데 틀린 tooling factors, 증착에 따라 변하는 tooling factor, 굴절률 변화, 잘못된 두께 지정 등이 있을 수 있습니다. 그러므로 Reverse engineering은 그 원인을 찾는데 있으며 흡수의 변화는 무시 하는데

만일 매질이 보통 이상으로 흡수가 되어진다면 Reverse Engineer 사용 전에 고정되어져야 합니다.(예를 들면 산소유량 조정으로) Reverse engineering에서 최적화를 "Adjustment " 라고 하며 Adjustment 를 통하여

제작품의 측정된 성능에 가장 가깝게 근접하게 합니다.

Reverse engineering 실행 하기

"File > New > Reverse Engineer "

Ess	sential Macleod	
File	Tools Options Help	
	New Cpen Ctrl+O Open a Copy of Open Material Open Substrate Open Reference	Design Material Optical Constant Table Stack vStack
	New Job Open Job Close Job	Substrate Operation Machine Configuration
	Page Setup Printer Setup	Simulator Reverse Engineer
	1 C:AR 2-1 4-Layer.dds 2 C:21 Layer Longwave Pass Filter.dds	Report Template Script

Keverse Engineer		25
Choose Design		
To begin reverse engineering, first choose a design to be adjusted measured performance. Click on the Browse button to select the d	l to meet the lesign file.	
C:\ProgramData\Thin Film Center\Designs\AR 2-1 4-Layer.dds	Browse	
When you have selected the design, click on Next	디자인 파일을 찾아 선정	
Cancel	Next	

Keverse Engineer	25
Specify Substrate 명시	
Enter the material used for the substrate and the substrate data defining the bulk properties of the substrate. The Substrate Thickness is only important when the Substrate Bulk is not Lossless. Also specify the measurement conditions: The medium in which the substrate was measured and if multiple beams were collected in the measurements.	
Substrate Material Glass	
Substrate Thickness (mm) 1.000 Substrate Type: Parallel	
Measurement Medium Air	
<u>Cancel</u> 측정된 Data 입력 하기→ <u>Add Spectrum</u>	
Add Spectrum 측정 Data 파일 불러 오기 (table 파일만 가능)	
Spectrum Iype Reflectance C 0 - 1 C 0 - 100%	
Cone Angle (deg)	
Cancel Add Another Spectrum Einish	

- W	/avelength (nm)	Reflectance (%)
	400	14.574977
	410	17.218531
	420	19.198798
	430	20.610383
	440	21.589713
	450	22.209325
	460	22.556202
	470	22.692162
	480	22.680339
	490	22.584257
	500	22.406438
	510	22.198721
	520	21.953215
	530	21.716959
	540	21.478552
	550	21.275480
	560	21.080714
	пк	Cancel

파일을 불러와 해당 데이터 칼럼만 선택 후 " OK " 버튼 클릭하면 Data가 입력된 것이 보여지면 "Finish" 버튼 클릭.

> 측정 데이터가 입력되면 추출된 Data의 특성을 입력 후 "Finish" 버튼 클릭. 수직 입사의 경우 Polarization은 계산에 영향이 없습니다.

•	Wavelength 400	Magnitude 14.574977			
	410	17.218531 19.198798		Choose <u>D</u> ata	
	430	20.610383	+		
Spect	rum <u>Type</u> Reflectanc	e 🔽	○ 0· <u>1</u>	ତ <u>0</u> ·100%	
Incident Ar	ngle (deg) U		Polarization:	•	
Cone Ar	ngle (deg) 0		-		

d redesign2					
RMS Difference: 6.5146					
Design] <u>1</u> : Reflectance)				
🔽 Show Use Points	🔽 Show Adjusted N	leasurements	Incident Angle (deg)	Cone Angle 0	_
Show Ignored Points	🔽 Show Adjusted [Design	Polarization P 💌	1	
Reflectance (%)					
30 20	XXXXXXX	xxxxxx xx	<u>×××××××××××××××××××××××××××××××××××××</u>	*****	
300	400	500	600	700	800
	× Use Points	—×— Adji	usted Measurement	 Adjusted Design 	
Use Points Iana	re Points	All Points	nore All Points Use Inte	rval 1	

상단 메뉴에서 "Adjust > Parameters " 클릭

<u>v</u> lat	erial <u>L</u> ayer <u>S</u> pec	trum M <u>a</u> terial Mod	els <u>H</u> istory					
	Material	Thickness Action	Order	Density Action	Order	Inhomogeneity Action	Order	Adjust
	SiO2	Adjust	Constant	Not Used	Constant	Adjust	Constant	Church
	1:02	Adjust	Constant	Not Used	Constant	Adjust	Constant	Liose
	All	Adjust	Constant	Not Used	Constant	Adjust	Constant	
_								

해당 Cell에 마우스를 놓고 "Adjust" 선택, 전부 이면 "All " Cell에 놓고 지정한 후 "Adjust" 버튼 클릭.

Reverse Er	ngineer Paramet er Spectrum M	ers aterial Models <u>H</u>	istory	
Layer	Thickness Action	Density Action	Inhomogeneity Action	Adjust
1	Adjust	Adjust	Adjust	Church
2	Adjust	Adjust	Adjust	LIOSE
3	Adjust	Adjust	Adjust	
4	Adjust	Adjust	Adjust	
5	Adjust	Adjust	Adjust	
All 🚽	Adjust	Adjust	Adjust	

자동으로 Adjust가 진행되는 동안 기다립니다.

RMS Difference displays the difference between the measured performance and the performance of the adjusted design. If this number is zero, then the measured performance and the adjusted design performance have the same values.

설계 Data와 측정 Data 입력이 완료된 상태로 오차를(RMS Difference) 확인 할 수가 있습니다.

DМ		0.019549								
	5 Dillelence	3. 0.013340								
)es	ign <u>1</u> :)	eflectance								
	Medium Ma	terial Air	-	Substrat	te Type Para	allel	▼ Su	ubstrate Thic	kness (mm)	1.000
S	ubstrate Ma	iterial Glass	-	Substra	ate Bulk Los	sless	•			
	Layer	Material	Refractive Index	Extinction Coefficient	Physical Thickness (nm)	Systematic Thickness Change (%)	Systematic Density Change	Systematic Inhomo- geneity	Random Thickness Change (%)	Random Density Change
Þ	Medium									
	1	SiO2	1.46180	0.00000	116.04	0.08%	0.0000	0.0279	3.29%	-0.8541
	2	Ti02	2.34867	0.00037	68.39	-0.64%	0.0000	0.0063	6.05%	-0.0714
	3	SiO2	1.46180	0.00000	115.41	0.08%	0.0000	0.0279	-18.37%	-0.1205
	4	Ti02	2.34867	0.00037	0.33	-0.64%	0.0000	0.0063	618.44%	-38.1066
	5	SiO2	1.46180	0.00000	11.63	0.08%	0.0000	0.0279	2.67%	0.1532
_	Substrate									
_										
-					311.81					

"Design" 을 클릭하면 변경된 내용을 볼수 있으며, 상단 메뉴 "File >Save Adjusted Design As.." 선택하여 새로운 파일명 입력하여 디자인 파일로 저장 하면 됩니다. Reverse Engineering File로 저장하려면 "Save"를 이용 하시면 됩니다.

Adjust Menu

"Adjust > Parameters "

디자인의 Adjustment동안 사용되어질 패러미터 (Materials, Layer, Spectum, Materail Models, History)를 관리.

a	terial Layer Spectru	m Material Model	s <u>H</u> istory					\frown
	Material	Thickness Action	Order	Density Action	Order	Inhomogeneity Action	Order	Adjust
	Si02	Adjust	Constant	Not Used	Constant	Not Used	Constant	Classe
•	HfO2	Adjust	Constant	Not Used	Constant	Not Used	Constant	Liose
	All	Adjust	Constant	Not Used	Constant	Not Used	Constant	
				5				
_						S		

History : Adjustment 전 과정을 기록, 해당 RMS Difference 컬럼을 더블 클릭하면 디자인이 변경 됩니다.

File	Spectra	Adjust	Results	Tools	Options			
	Di 😂 🛃 🖟 Parameters							
_		Con	troi Parar	neters				

"Adjust > Control Parameters "

해당 패러미터 (Materials, Layer, Spectra)의 시작 값에서 증가시키는 비율적인량 설정

Material Starting Increment	Layer Starting Increment	Spectra Starting Increment	Adjustment	Maximum Change	ОК
	Cancel				

Material Starting Increment	Layer Starting Increment	Spectra Starting Increment	Adjustment	Maximum Change	ОК
	Cancel				

Adjustment 조건 설정 : 횟수, Merit Function 한계치 설정.

컴퓨터로 한 코팅을 더 좋은 코팅으로 만들고자 할 때 컴퓨터로는 "좀더 좋고 또는 좀더 나쁘고" 라는 구분이 어렵기 때문에 기준의 한 수를 정해 놓고 그 수가 어떤 수 보다 작은지 또는 큰지를 구별 하는 기능을 이용하여 평가하는 것이 가장 바람직합니다.

그러므로 컴퓨터가 이에 대한 작동을 시작 하기 전에 우리가 개선되어 져야 할 코팅의 품질 값에 대응한 기준 숫자(Single number)가 설정 되어져 있어야 합니다.

이 기준 숫자(Single number)를 "Figure of Merit" 이라고 하는데 이 값은 "Function of Merit" 라고 하는 기능(Function)에 의해 규정되어지며 실제 코팅과 원하는 코팅의 품질 차이를 표시하여 줍니다.

그러므로 코팅 원하는 품질에 가까울 수록 "Function of Merit" 의 값은 작아지며 만약 "0"이 되면 바로 원하는 코팅과 실제 코팅이 완벽하게 일치하는 것을 의미하며 최적화의 목적은 주어진 제약 조건 하에서 "figure of merit" 값을 가능한 한 작게 하는데 있습니다.

Control I	Parameters				23	
Material Starting Increment	Layer Starting Increment	Spectra Starting Increment	Adjustment	Maximum Change	ОК	Adjustment에서 변경의 최대 허용치
Thick	ness (nm) 100	0.00	Wavelength (r	nm) 3.00	Cancel	실성
Packin	g Density 0.5		Transmittance	(%) 0.500000		
Inhor	nogeneity 0.6		Reflectance	(%) 0.500000		