프로그램 설계 (Basic)

1) 생산 제품의 Specification 설정

생산품 : 카메라폰 렌즈 Spec : AR 코팅, 400 ~700 nm , 0.5T, Glass 반사율 0.6% 이하 증착장비 : 이온 빔

2) 물질 선정

Tio2, Sio2 (굴절률 data 필요)

3) 광학박막 이론적 설계

Macleod Essential Program 실행

설계 과정에 따라 해당 Window 별로 Tool Bar 메뉴가 변경되어 나타나며 보여지는 버튼 선택으로 상단 문자 방식의 명령과 동일하게 실행 할 수가 있습니다.

Copyright ⓒ 디지크라식 http://www.rf.co.kr

Incident Angle(입사각): 0.00 (입사각이 물질과 수직인 상태) Reference Wavelength (기준파장): 가시 파장대역의 중간 Layer (박막 층수) Material (물질 명): 마우스로 해당 셀을 클릭하여 물질 입력(선정) Refractive Index (굴절률): Reference Wavelength에서의 굴절률 Extinction Coefficient (소멸계수): 물질의 소멸계수 Optical Thickness : 0.25 (¼λ로 최적인 상태) Physical Thickness : 물질 두께

마우스로 해당 셀에서 직접 물질을 입력 하거나 "화살표" 버튼을 클릭, 찾아서 선정 합니다.

.	Essential Ma	icleod					_	. 🗆 ×					
Eile) <u>E</u> dit <u>P</u> a	rameters Pe <u>r</u> formano	ce <u>L</u> ock/Link	<u>T</u> ools <u>O</u> ptio	ns <u>W</u> indow <u>I</u>	Help				1 1			
										11			
									Incide	nt	Reflected		Medium
										V			
	<u>-</u>	Design4	1				믜피			- *			í -
	De	s ign <u>C</u>ontext <u>N</u>otes	<u> </u>							-			1.000
	Inc	cident Angle (deg) vference W avelength (nm)	0.00										Coating
		internet waveenger(int)	010.00				=						
		Layer Materia	Refractive	Extinction	Uptical Thickness _{ты.}	Physica	1						
		Marine Air	1.000		(FW0T) ""	CKNESS	riin)		Tranco	ittad	1	Rack	
	▶	1 SiO2	1.461	B0 0.00000	0.25000000	(37.22		manism	ittea		Duck	
		Substrate Glass	1.520	77 0.00000						1		rejiected	,
											1	1	Substrate
					0.25000000	8	37.22				6		
	_												
				Insert		_	_						
1			, , , , , , , , , , , , , , , , , , ,	moore									
1	Destant												
	ign) Contout) Notos)											
Inc	ident Anale (dea				-		-			1			
Re	erence Waveler	ngth (nm) 510.00				File	Ed	Parameters	Perform	ance	Lock/Link	Tools Optic	ons Windo
	Lauer	Material Refractive	Extinction Op	tical Physica			2 %	Cut Layers	Ctrl+X	13.	p 🔤 +	🗐 🗘 🌒	💊 🗸 🛛 🔕 🤞
		Index	Coefficient (FV	/OT) Thickness (nm)			Copy Design					
Þ	1 SiD:	2 - 1.46180	0.00000 0.25	000000 8	7.22	e 2	1	Copy Layers	Ctrl+C			1	
	Substrate Glas	ss 1.52077	0.00000			Des	ic	Copy Thicknes	sses 🕨				
-	Design1					Incid	de 🙉	Paste Lavers	Ctrl+V				
	.) .					Refe	31	Paste Decion	07714-00				
Des	iign <u>C</u> or	ntext <u>N</u> otes				- T	-	Paste Design				Ontical	Physical
Inci	dent Angle	(deg) 0.00						Paste micknes	sses 🕨	ractive ndex	Extinction	Thickness	Thickness
Ref	erence Wa	velength (nm) 510.0	10				-	Paste Column	S	1 00000	0.00000	(FWOT)	(nm)
			D () (Optical		-	Insert Layers		2.29175	0.00000	0.12500000	32.73
	Layer	Material	Refractive Index	Extinction	Thickness			Delete Lavers		1.45808	0.00000	0.25000000	102.88
	LL P	A.'	1.00000	0.00000	(FWOT)	-		b child boy child		2.29175	0.00000	0.25000000	65.45
	Medium 1	Alf	2.34967	0.00000	0.0000000	-		Reverse Layers	5	1.45808	0.00000	0.25000000	102.88
-	2	Si02	1.46180	0.00000	0.25000000			Reverse Design	n	1.45808	0.00000	0.25000000	102.88
	Substrate	Glass	1.52077	0.00000	0.20000000			-		2.29175	0.00000	0.25000000	65.45
							HLH	Formula		1.45808	0.00000	0.25000000	102.88
	aa						_	Generate Ruga	ate	2.29175	0.00000	0.25000000	65.45
							-	Generate Desig	gn	1.45808	0.00000	0.25000000	102.88
						-		Color This law of		1 45808	0.00000	0.25000000	102.88
	.											5.20000001	102.001
	d - 0												
	d d								-				D .
									Kever	se Lay	/ers 또는	Reverse	Design
	3 2		(j						으로	구조 변	변경이 가	능 합니디	ŀ.
						-							
					0.25000000		13	07.22					
			2		0.25000000	2		07.22					

다음 물질은 마우스로 그림의 파란색 셀을 클릭하여 전체라인을 선택한 후 상단 "Tool Bar"에 "Edit" ▶ "Insert Layer "▶ 하면 Layer셀 하나가 추가 생성 되면 동일한 방법으로 물질을 입력하면 됩니다. 물질선정이 끝나면 광학박막 이론설계를 합니다.

물질 선정이 결정되면 설계 목표 값에 맞도록 분석/설계를 합니다.

설계파일이 활성화된 상태에서 상단 "Tool Bar" ▶ "Parameters" ▶ "<u>R</u>efinement" ▶ "<u>T</u>argets "

ile <u>E</u> dit	E	arameters	Perfor	mance	Lock/L	ink <u>I</u> oo	ols <u>O</u> ptions
🗕 4-laye		Performan	nce				
Design Incident Referenc Total Thi	e W	3D Perform avelength (nance (nm) <mark>S</mark> 0		argets implex ptimac imulated onjugate	I <u>A</u> nnealir Gradien	ng
Lay	er	Materi	al	Re G	luasi Ne leedle S	wton, ynthesis,	
Med	lium	Air	-	1	,00	0,00	
	1	SiO2	_	1	,46	0,00	0,25000000
	2	TiO2		2	2,35	0,00	0,5000000
	3	SiO2		1	,46	0,00	0,0800000
	4	TiO2		2	2,35	0,00	0,06500000
	ate	Glass	-		52	0.00	

Wavelength (nm)	Operator	Required Value	Туре
400.00	=	0.000000	Reflectance (%)
425.00	=	0.000000	Reflectance (%)
450.00	=	0.000000	Reflectance (%)
475.00	=	0.000000	Reflectance (%)
500.00	=	0.000000	Reflectance (%)
525.00	(=)	0.000000	Reflectance (%)
550.00		0.000000	Reflectance (%)
575.00		0.000000	Reflectance (%)
600.00	=	0.000000	Reflectance (%)
625.00		0.000000	Reflectance (%)
650.00	=	0.000000	Reflectance (%)
675.00	=	0.000000	Reflectance (%)
700.00	=	0.000000	Reflectance (%)

Targets 파일 생성

	ential Macleou						
ile	Edit Tools Optio	ns <u>₩</u> indow <u>H</u>	lelp				Targets J
4	Cut Hows	Ctrl+X					사태에서
Des	Copy Targets	ChrlaC					
Inci	Paste Targets	Curre					상단 "To
Ref	Paste Rows	Ctrl+V	-layer AR(wit	de): Targets			Fdit"
	Incort Bowe		ndard Color	Thickness			Luit
	Delete Bows		Wavelength	Required Value	Type		" <u>G</u> ene
	Sort		(nm) 450.00	0.000000	Patlactance (%)		_
<u> </u>	Global Edit		475,00	0,000000	Reflectance (%)		
	Scale Targets		500,00	0,000000	Reflectance (%)		
	<u>G</u> enerate		525.00	0,000000	Reflectance (%)		
	Set Default Telev	20000	575,00	0,000000	Reflectance (%)		
<u> </u>	Set Delault Tolei	ances	600,00	0,000000	Reflectance (%)		
<u> </u>	 Display Wavelen 	gth	650,00	0,000000	Reflectance (%)		
	Display Wavenu	nber	675,00	0,000000	Reflectance (%)		
			700,00	0,000000	Reflectance (%)		
						Þ	
			Inse	t			
3. G	aenerate	Targets			X	3	
3. G	Generate avelength (nm	Targets				3	
3. G	Generate	Targets)			Add	3	
3.G -Wa Sta	Benerate avelength (nm art: 400	Targets) End: 700	Step	x 25	Add	파장 대역	
¶, G −Wa Sta	Generate avelength (nm art: 400	Targets) End: 700	Step	x 25	Add	파장 대역	
3, G −Wa Sta	Senerate avelength (nm art: 400	Targets) End: 700	Step	»: 25	Add	파장 대역	
Sta	Senerate avelength (nm art: 400 cident Angle (d	Targets) End: 700	Ster	x 25	Add New	파장 대역	
5. G −Wa Sta -Inc	Senerate avelength (nm art: 400 cident Angle (c art: 0	Targets) End: 700 Jeg) End: 0	Step	x 25 x 0	Add New Close	파장 대역	
5, G −Wa Sta Sta	Senerate avelength (nm art: 400 cident Angle (c art: 0	Targets) End: 700 Jeg) End: 0	Step	x 25 x 0	Add New Close	파장 대역	
¶, G Sta −Inc Sta	Senerate avelength (nm art: 400 cident Angle (o art: 0 eneral	Targets) End: 700 Jeg) End: 0	Step	x 25 x 0	Add New Close	파장 대역	
5. G Sta −Inc Sta	Senerate avelength (nm art: 400 cident Angle (o art: 0 eneral	Targets) End: 700 Jeg) End: 0	Step	x 25 x 0	Add New Close	파장 대역	
3. G – Wa – Inc – Inc – Ge	Senerate avelength (nm art: 400 cident Angle (o art: 0 eneral Cont	Targets) End: 700 jeg) End: 0 ext: Normal	Step	x 25 x 0	Add New Close	파장 대역	
5) G −Wa Sta −Inc Sta	Senerate avelength (nm art: 400 cident Angle (o art: 0 eneral Cont Opera	Targets) End: 700 Jeg) End: 0 ext: Normal	Step	x 25 x 0	Add New Close	파장 대역 하 (같거니	· - 전게)
3. G Sta −Inc Sta	avelength (nm art: 400 cident Angle (o art: 0 eneral Cont Opera Required Val	Targets) End: 700 deg) End: 0 ext: Normal itor: <= ue: 0.6	Step	x 25 x 0 マ マ マ レ	Add New Close 이 3 - 율 목표 값	파장 대역 하 (같거니 (%)	+ 적게)
3. G −Wa Sta −Inc Sta	Senerate avelength (nm art: 400 cident Angle (o art: 0 eneral Cont Opera Required Val Weig	Targets) End: 700 deg) End: 0 ext: Normal itor: <= ue: 0.6 jht: 0.5	Ster Ster	x 25 x 0 ▼ ▼ ● 반시 ● 무게	Add New Close	파장 대역 하 (같거니 (%)	+ 적게)
3. G Sta Sta Sta	Senerate avelength (nm art: 400 cident Angle (o art: 0 cont Cont Cont Required Val Weig arget Toleran	Targets) End: 700 deg) End: 0 ext: Normal ator: <= ue: 0.6 pht: 0.5 ce:	Ster Ster	x 25 x 0 ・ ・ ・ ・ ・ ・ ・ ・ ・	Add New Close 일 목표 값	파장 대역 하 (같거니 (%)	+ 적게)
3. G -Wa Sta - Inc Sta - Ge	Senerate avelength (nm art: 400 cident Angle (r art: 0 eneral Cont Opera Required Val Weig arget Toleran	Targets) End: 700 deg) End: 0 ext: Normal otor: <= ue: 0.6 pht: 0.5 ce: Pe: Reflect	Step Step	x 25 x 0 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Add New Close B 목표 값	파장 대역 하 (같거니 (%) 사율	+ 적게)
3 G -Wa Sta - Inc Sta - Ge	avelength (nm art: 400 cident Angle (r art: 0 eneral Cont Opera Required Val Weig arget Toleran Ty Derivati	Targets End: 700 Jeg) End: 0 End: 0 0 ext: Normal 0 stor: <=	Step Step	x 25 x 0	Add New Close 월 목표 값	파장 대역 하 (같거니 (%) 사율	+ 적게)
5 G -W/ Sta Sta - Ge	avelength (nm art: 400 cident Angle (o art: 0 eneral Cont Opera Required Val Weig arget Toleran Ty Derivati	Targets) End: 700 deg) End: 0 ext: Normal ator: <= ue: 0.6 ght: 0.5 ce: pe: Reflect ve: 0	Step Step	x 25 x 0 マ マ マ マ マ マ マ	Add New Close 월 목표 값	파장 대역 하 (같거니 (%) 사율	+ 적게)

Fargets 파일 창이 활성화 상태에서 상단 "Tool Bar" > "Edit" > "<u>G</u>enerate..." 선택

Targets 창에 설계 값 입력 후 "New" 버튼을 클릭 (Spec : 400 ~700 nm , 0.5, Glass 반사율 0.6% 이하)

Targets 파일이 설게 목표 값으로 변경되어 보여 줍니다.

(nm)	Operator	Required Value	Weight	Tolerance	Туре
400.00	<=	0.600000	0.5	1.000000	Reflectance (%)
425.00	<=	0.600000	0.5	1.000000	Reflectance (%)
450.00	<=	0.600000	0.5	1.000000	Reflectance (%)
475.00	<=	0.600000	0.5	1.000000	Reflectance (%)
500.00	<=	0.600000	0.5	1.000000	Reflectance (%)
525.00	<=	0.600000	0.5	1.000000	Reflectance (%)
550.00	<=	0.600000	0.5	1.000000	Reflectance (%)
575.00	<=	0.600000	0.5	1.000000	Reflectance (%)
600.00	<=	0.600000	0.5	1.000000	Reflectance (%)
625.00	<=	0.600000	0.5	1.000000	Reflectance (%)
650.00	<=	0.600000	0.5	1.000000	Reflectance (%)
675.00	<=	0.600000	0.5	1.000000	Reflectance (%)
700.00	<=	0.600000	0.5	1.000000	Reflectance (%)

다시 설계(Design)파일 창을 활성화한 후 상단 "Tool Bar" ▶ "Parameters" ▶ "<u>R</u>efinement" ▶ "*Optimac*"선택

Essential Macleod Elle Edit Parameters Performance Lock/Link Iools Options Win Galager Performance	Sin 두지 ndow Help 자동	<i>nplex</i> 게만(층수는 고정) 동으로 최적화 기능
Design Hetinement Jargets Incident 30 Performance Simplex Reference Wavelength (nm) 50 Total Thickness 0,65 Medium Air 1,00 1 SiO2 1,46 2 TiO2 2,35 3 SiO2 1,46 3 SiO2 1,46 1 Vol 2 2,35 0,00 0,05000000 3 SiO2 1,46 1,46 0,00 0,05500000 0,5000000	 <u>Targets</u> Simplex Optimac Simulated Annealing Conjugate Gradient Quasi Newton Needle 	<i>Optimac</i> 두께와 층을 자동으로 최적화 기능
Insert		

2000		-	1.00			
100	- 01	0.	284	-	01	100
	0	0.	- 10	a	0	11-1

Design Context Notes

Incident Angle (deg)	0.00
Reference Wavelength (nm)	510.00

Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)
Medium	Air	1.00000	0.00000		~
1	SiO2	1.46180	0.00000	0.23972361	83.64
2	TiO2	2.34867	0.00037	0.30347534	65.90
3	SiO2	1.46180	0.00000	0.01212734	4.23
4	TiO2	2.34867	0.00037	0.13591015	29.51
5	SiO2	1.46180	0.00000	0.48855913	170.45
6	Ti02	2.34867	0.00037	0.10625111	23.07
7	SiO2	1.46180	0.00000	0.03288656	11.47
8	Ti02	2.34867	0.00037	0.29251877	63.52
9	SiO2	1.46180	0.00000	0.05588123	19.50
10	TiO2	2.34867	0.00037	0.06751346	14.66
Substrate	Glass	1.52077	0.00000		
				1.73484669	485.95

현재까지 자동으로 최적화된 설계이며 Synthesis 파일의 해당 Layer를 클릭하면 설계파일이 보입니다.

설계파일을 검증하기 위해 데이터를 그래프로 보려면 설계파일 창을 활성화한 상태에서 아래그림과 같이 "<u>P</u>erformance..." 를 선택 합니다.

🗕 Es	sentia	l Macleod							_ 🗆 ×
<u>F</u> ile	<u>E</u> dit	Parameters	Performance	Lock/Link	Tools	<u>Options</u>	₩indow	<u>H</u> elp	
		Performan	ce						
		<u>R</u> efinemen 3D Perform	it + nance						

자동으로 설계된 설계파일(Design File)과 Synthesis 파일 이라는 2개 파일이 나타납니다.

X축 :	: 파장대역 데이터	
3. Performance	Parameters	
Horizontal Axis V	/ertical Axis 2nd Vertical Axis	
Wavelength (nm)		<u><u>Q</u>K <u>P</u>lot</u>
Automatic Scale 🔽		Plot Over
Maximum Value 700 Minimum Value 400	◎ Y숙 : 반사/두과율 네이터 ◎	Active Plot
Interval for Plot 50		<u> </u>
Interval for Table 20	1	Cancel
Layer Number 1		

데이터 입력 후 "Vertical Axis " 버튼 클릭

orizontal Axis Vertical Axis	2nd Vertical Axis			1 0%
Reflectance Magnitude (%)	Add to Label	F Plot Targets	3	<u>Plot</u>
Automatic Scale 🔽	Context:	Normal	 Add to Label 	Plot Over
Maximum Value 0	Derivative	0	Add to Label	Active Plot
Interval for Plot 20	Incident Angle (deg)	0.00	Add to Label	<u>I</u> able
	Temperature Offset (deg C):	0	Add to Label	<u>C</u> ancel

반사율을 보아야 하므로 "Refle... " 선택한 후 "Plot" 버튼 클릭

설계된 내용을 파장,반사율 그래프로 보여 줍니다.

반사율이 0.6% 이상인 대역도 있으므로 현재 완벽한 설계는 아닙니다.

이 상태에서 설계파일만 남기고 나머지는 모두 닫은 후 아래와 같이 "*Simplex*" 을 실행 합니다.

Essential Macleod <u>Elle Edit Parameters Performanc</u> <u>4-layer</u> <u>Befinement</u>	e Lock/Link Tools Options 1 Targets	<u>yindow H</u> elp	<i>Simplex</i> 두께만(층수는 고정) 자동으로 최적화 기능
Incident Ange Case 30 Performance Reference Wavelength (nm) 510 Total Thickness 0.85 Layer Material	Simplex Optimac Simulated Annealing Conjugate Gradient Quasi Newton Needle Sunthesis SS	• <u>Targets</u> • Simplex	
Medium Air y 1 SiO2 2 TiO2 3 SiO2 4 TiO2 3 ubstrate Glass	1.00 0.00 1.46 0.00 1.46 0.00 0.85000000 0.5000000 1.46 0.00 0.35 0.00 0.06500000 1.52	 Optimac Simulated Annea Conjugate Grad Ouasi Newton 	aling ient
	Insert	• Quasi Newton • Needle	

3 Simplex Parameters	
Refine Thicknesses 🔽 Refine Index 🗖	OK Refine
Thicknesses	General
Upper Thickness Limit: 0.75 Lower Thickness Limit: 0 Starting Thickness Increment: 0.1	Minimum Merit Functions: 1000 Minimum Merit Function Improvement To Update Plot (%): 25 Recycle Interval: 0
Index Upper Density Limit: 1.2 Lower Density Limit: 0.8 Starting Density Increment: 0.1 Common Scaling:	Merit Function Merit Function Power: 2 Limiting Range For Merit Function: 0.01 Use Custom Merit Function Source File: Browse
R-basic: Simplex Progress Start Figure of Merit: 0.0085452 Iteration: 60 Figure of Merit Range: 0. to 0.0091074 Figure of Merit: 0.0091074 Figure of Merit: 1.4472202	Pause
Reflectance (%)	re of Merit 0, after 60 iterations, ····································

"Refine" 버튼 클릭하면 자동으로 목표 값에 근접 한 설계를 수행 합니다.

"Refine" 버튼을 클릭하면 자동으로 목표 값에 근접한 설계를 수행하면 "확인" 버튼을 클릭하면 층수는 변하지 않은 상태로 두께(Thickness)만 조정된 설계파일이 생성됩니다.

4	AR-basi	ic								
Des	sign <u>C</u> on	itext <u>N</u> otes		설계파일을 검증하기 위해						
Inci	dent Angle		데이터를 그래프로 보려면							
Ref	erence Wa	velength (nm) 510.	선계파인 차은 화서하하							
			큰게퓌ㄹ ㅇㄹ ᆯㅇ푀친							
			Refractive	Extinction	Optical	Physical	상태에서 아래그림과 같이			
	Layer	Material	Index	Coefficient	FW/DT)	Thickness (nm)	" <u>P</u> erformance" 를 선택			
	Medium	Air	1.00000	0.00000	((하여 전과 간이 하시며			
-	1	Si02	1.46180	0.00000	0.24140378	84.22				
	2	Ti02	2.34867	0.00037	0.33049670	71.77	뀝니냐.			
	3	SiO2	1.46180	0.00000	0.01306176	4.56				
	4	Ti02	2.34867	0.00037	0.12082065	26.24				
	5	Si02	1.46180	0.00000	0.50811622	177.27				
	6	Ti02	2.34867	0.00037	0.13330236	28.95				
	7	SiO2	1.46180	0.00000	0.03463515	12.08				
	8	Ti02	2.34867	0.00037	0.28751169	62.43				
	9	Si02	1.46180	0.00000	0.07122131	24.85				
	10	102	2.34867	0.00037	0.06809662	14.79				
	Substrate	Glass	1.52077	0.00000						
	2									
		6								
	8				1 80866624	507.15				
	Essential M	lacleod								
Eile	e <u>E</u> dit P	arameters Perform	mance Lock/	'Link <u>T</u> ools	Options W	indow <u>H</u> elp				
		Performance								
		<u>B</u> efinement	•							
		3D Performance								
W AF	-hagic' Bo	floctance								
<u></u>	, buolo, no	liberarioo								
			8	AR-basic: Reflec	tance					
	Reflectanc	e (%)								
	Π ήτ									
		\wedge								
	0.5	····/····				\sim				
	0.4		······	~	•••••••	·· <i>·/</i> ·····\				
	n 3 [‡]					/	X			
			1		/:					
	0.2	1	1		/					
	0.1	/\		·····/						
	0.0 L V	+				,				
	400		500		600)	700			
				Wavelength ((nm)					

이론적으로는 목표 값에 일치하는 설계가 완성 되었지만 실제 가공,생산에 대한 검증이 필요 합니다. 파일 저장은 "File" 메뉴에서 "Save <u>A</u>s"로 하여 합니다.

간편 하게 Stack 사용 하기 (Ver. 9.3 이상)

기전 버전 프로그램의 경우 Design (무한 기판에서의 설계) 후 유한 기판에서의 투과율 또는 반사율 simulation 할 경우 File => new => stack 사용으로 좀 번거로웠지만 9.3 버전의 경우는 하나의 design 창에서 유한 기판에 대해 양면 코팅을 같이 설계할 수 있고 바로 전산 Simulation 결과를 확인할 수 있습니다.

사용 방법

File > New > Design (하나의 설계 파일을 열고)

File > Display Setup

	Charles										
1	Medium Packing Density				열린 항목 중에서 Medium 선택 후 "Close"						
Optical Thickness Physical Thickness Geometric Thickness Locked Link Design Context 1				ext) Note	Design File 항목에 Medium Type 보여지면 마우스로 해당 셀을 클릭, 설정하시면 됩니다.						
	Void Material	Inc	ident Angle (deg)	0.00				_		
	Void Density	Re	ference Wav	elength (nn	h (nm) 510.00						
	Inhomogeneity Fa Mediur Type Minimum Physica (Incident		Medium Type	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (Fu(OT)	Т		
					Air	1.00000	0.00000	(FWUI)			
	Maximum Physic	D	-	1	Na3AIF6	1.35000	0.00000	0.25000000			
	Minimum Ontica		Emergent		Glass	1.52083 0.00000	0.00000				
	Main optica	┢							-		
	Maximum Optica										
	Minimum Packin	-							_		
	Maximum Packin	H									
		L							_		
		F									
		-							_		
		F						0.25000000	2		

수정/보완

지금까지의 과정을 통하여 완벽한 설계가 되었다고 해도 경쟁력 있는 제품을 만들기 위해서는 품질, 생산시간 단축과 원가절감을 좀더 할 수 있는 요소를 계속적으로 검토 해야 합니다.

하나의 방안으로 층수를 가능한 적게 하고 물질분석을 통하여 좀더 좋은 코팅을 찾아야 합니다.

앞선 한 AR Coating 설계파일을 보면

rence Wa	velength (nm) 510	.00			
Layer	Material	Refractive Index	Extinction Coefficient	Optica Thickness (FWOT)	Physical Thickness (nm)
Medium	Air	1.00000	0.00000		
1	SiO2	1.46180	0.00000	0.24140378	84.22
2	Ti02	2.34867	0.00037	0.33049670	71.77
3	SiO2	1.46180	0.00000	0.01306176	4.56
4	Ti02	2.34867	0.00037	0.12082065	26.24
5	SiO2	1.46180	0.00000	0.50811622	177.27
6	Ti02	2.34867	0.00037	0.13330236	28.95
7	SiO2	1.46180	0.00000	0.03463515	12.08
8	TiO2	2.34867	0.00037	0.28751169	62.43
9	SiO2	1.46180	0.00000	0.07122131	24.85
10	TiO2	2.34867	0.00037	0.06809662	14.79
Substrate	Glass	1.52077	0.00000		
				1.80866624	507.15

만일 증착설비가 두께 20nm 이상만 가능하다면 그 이하 증착 층은 코팅이 불가능 하므로 없애야 합니다. 이런 경우 설계파일이 활성화된 상태에서 상단 Tool Bars 에서 Tools ▶ Compact Design 창에 아래와 같이 입력하고 "OK" 버튼을 누르면 자동으로 층이 삭제되면서 재 설계가 됩니다.

Minimum Layer Thickness:	20	OK
Thickness Type:	Physical (nm)	▼ Cancel

4	ARtestO	D1					
De	sign <u>C</u> or	itext <u>N</u> otes)				
Inci	dent Angle	(deg)	0.00				
Het	erence Wa	velength (nm)	510.0	JU			
	Layer	Materia	ıl	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)
•	Medium	Air		1.00000	0.00000		
	1	SiO2		1.46180	0.00000	0.24140378	84.22
	2	TiO2		2.34867	0.00037	0.45131735	98.00
	3	SiO2		1.46180	0.00000	0.50811622	177.27
	4	TiO2		2.34867	0.00037	0.42081404	91.38
	5	SiO2		1.46180	0.00000	0.07122131	24.85
_	Substrate	Glass		1.52077	0.00000		
							·
	98		2			1.69287270	475.72

그러나 층은 줄어 들었지만 반사율 조건은 미흡 하므로 다시 최적화 하는 과정을
거쳐야 합니다. 다음은 물질 Sio2를 MgF2로 바꾸어 보겠습니다.
설계파일이 활성화된 상태에서 상단 Tool Bars 에서 Edit ▶ Edit Materials

B. Replace Materials		🛱 Replace Mate	erials	
Select new materials to replace the current materials.	ОК	Select new materials materials.	to replace the current	ОК
Current Material TiO2 TjO2 SiO2 SiO2 ▼		Current Material TiD2 SiD2 마우스로 하	New Material H82 MgF2 당 물질 선정 또는	Cancel

"OK" 버튼을 누르면 자동으로 물질이 변경 됩니다. 변경전과 후의 결과를 비교해 보면서 가장 좋은 물질을 찾아 냅니다.

예를 들어 동일한 조건에서 SiO2를 MgF2로 변경하여 AR 코팅을 하면 증수도 적어지고 두께도 얇으며 설계 결과도 향상된 것을 볼 수가 있습니다.

-	AR-001						-	ARtestO	01				
Des	Design Context Notes						Design Context Notes						
Inci Ref	dent Angle erence Wa	(deg) 0.00 velength (nm) 510.	00		6 2 ³		Inci Ref	ident Angle erence Wa	(deg) 0.00 velength (nm) 510.	00			
	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)		Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)
	Medium	Air	1.00000	0.00000				Mediumy	Air	1.00000	0.00000	5 65 192 A	
	1	MgF2	1.38455	0.00000	0.27084662	99.77		- (SiO2	1.46180	0.00000	0.24140378	84.22
	2	1102	2.34867	0.00037	0.10046058	21.81		2	102	2.34867	0.00037	0.33049670	71.77
	3	MgF2	1.38455	0.00000	0.04342838	16.00		3	SiO2	1.46180	0.00000	0.01306176	4.56
	4	Ti02	2.34867	0.00037	0.48415884	105.13		4	Ti02	2.34867	0.00037	0.12082065	26.24
	5	MgF2	1.38455	0.00000	0.04064943	14.97		5	SiO2	1.46180	0.00000	0.50811622	177.27
	6	Ti02	2.34867	0.00037	0.13838651	30.05		6	Ti02	2.34867	0.00037	0.13330236	28.95
	7	MgF2	1.38455	0.00000	0.10578294	38.97		7	SiO2	1.46180	0.00000	0.03463515	12.08
	8	1102	2.34867	0.00037	0.05791572	12.58		8	Ti02	2.34867	0.00037	0.28751169	62.43
	Substrate	Glass	1.52077	0.00000				9	SiO2	1.46180	0.00000	0.07122131	24.85
								10	Ti02	2.34867	0.00037	0.06809662	14.79
					÷			Substrate	Glass	1.52077	0.00000		
								-					
					1.24162900	339.27						1.80866624	507.15

만약 처음 하는 코팅의 경우 샘플파일을 보면 매우 큰 도움이 됩니다. 본 프로그램에 있는 샘플파일은 입증된 설계로 가능하면 그대로 사용하시면 되고 수정이 필요하면 앞서 설명한대로 하시면 됩니다.

샘플파일을 보시려면 C:₩Program Data₩Thin Film Center₩Designs 폴더를 열면 됩니다.

Help 기능

프로그램에 있는 용어 정의 및 응용 방법을 쉽게 찾아 이해 할 수 있어 아주 유용한 기능 입니다.

이해가 잘 안 되는 사항이 있으면 우선적으로 이용하는 것이 좋습니다.

🛏 Es	sential N	Macleod		
<u>F</u> ile	Tools	<u>O</u> ptions	Help	
			Contents Search For Help On Obtaining Technical Support	
			About The Essential Macleod, Check for <u>U</u> pdates,	
			Check DLLs	

도움말 항목: Help for the Esse 목차 색인	ntialMacleod	? 🗙	새이 차에 디이르 이러
1 찾는 단어의 처음 몇 글자를 입력 Refinement	하십시오(<u>T</u>).		예를 들어 "Refinement"를 입력하고 "표시"를 클릭하면 보여주는 용어들 중
2 색인 양복을 전액이고 [표시]을 Refine Design Refinement Reflectance Reflection Coefficient Refactive Index Register Transfer Relative Rename Required Value Reverse Layers R-HW R-QW Rugate Bun Run Sheet Runsheet	≝≒on입시⊻(<u>U</u>).		해당되는 것을 선택하여 보시면 됩니다.
	표시(D) 인쇄(P),,,	취소	