Insert(삽입) 기능

1) Insert Layer

File > New > Design

	erence Wa	velength (nm) 510.00								
	Layer	Materia	al Rel	ractive ndex	Extinction Coefficient	Optical Thickness (FWOT)	Phys Thickne	sical ess (nm)			
	Medium	Air		1.00000	0.00000						
•	1	MgF2		1.38542	0.00000	0.25000000		92.03			
	2	AI203		1.66574	0.00000	0.25000000		76.54			
	Substrate	Glass		1.52083	0.00000						
_								_			
_		1				0 50000000	1	100 57			
						0.50000000	-	166.97			
E E	tial Macleo dit Parar ※ 같 말	od neters Per 🔉 🖄 🙀 🏢	formance] ¥ 💧 🗸	Lock/Li	nk Tools Þilþi Spil Gpi	Options Wi	indow	Help	- ा २९	ງ ສາຊາ	× ۵۵
E E Desig ign dent a	tial Macleo dit Parar & ¥ b gn1 <u>C</u> ontext Angle (deg) ce Waveleng	od neters Per 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	formance * & .	Lock/Lii	nk Tools Pi (Pi Spi Cpi	Options Wi	indow	Help	- ा २०२] ສາຊາ	× هو
E E Desig ign dent, La	tial Maclec dit Parar & V III gn1 <u>Context</u> Angle (deg) se Waveleng	od meters Per Notes Notes 0.00 gth (nm) 510. Material	formance	Lock/Lii	nk Tools P [P SP [] Ip S	Options Wi Dip 1/p D/p Dip 1/p D/p Dip 1/p D/p Dip 1/p Dip 1/p Dip 1/p Dip 1/p Dip 1/p D/p Dip 1/p D/p D/p D/p D/p D/p D/p D/p D/p D/p D	indow	Help	- [ງ 29 - 29	- 0 ¹⁰
E Design dent / La	tial Maclec dit Parar M V Parar gn1 Context Angle (deg) ze Waveleng ayer edium Air 1 MgF2	od meters Per Motes Motes Material	formance	Extinct Coeffic 0 0.0	nk Tools p (p Sp Cf tion Thickn (Fw0 0000 0000 0.2500	Options Wi Dip lip Dip al ess Thicknes 0000	indow NP -	Help) 19 129	> 90
E Coesic ign dent / crence La Sub	tial Maclec dit Parar gn1 Context Angle (deg) ce Waveleny aver aver 1 MgF2 2 Al203 strate Glass	neters Per Material	formance	Extinct Coeffic 0.0 2.0.0 4.0.0 3.0.0	nk Tools p (p Sp Cp tion Thickn (Fw0 0000 0000 0000 0000 0.2500 0000	Options Wi Dit Ip Dip al Physi Thicknes 0000	indow NP - ical iss (nm) 92.03 76.54	Help	- ा	3 39 33	
E E Desig ign dent / erend La	tial Maclec dit Parar gn1 Context Angle (deg) ce Waveleny wyer edium Air 1 MgF2 2 Al203 sstrate Glass	neters Per Material	formance	Extinct Coeffic 0 0.0 2 0.00 4 0.00	nk Tools p (p Sp Cp tion Thickn (FW0 0000 0.2500 0000 0.2500 0000 0.2500 0000 0.2500 0000 0.2500 0000	Options Wi Dip Ip Dip al Physi Thicknes 0000	indow NP - ical iss (nm) 92.03 76.54	Help	- [

삽입 Layer 선택, Edit > Insert Layer

- Losentia	al Mac	leod											×
ile Edi	it Pa	rameters	Perform	ance	Lock/Link	Tools Opt	ions Windo	ow H	lelp				
) ž 🗤	Und	5	Ctrl+Z	1.	a) 🕫 🧿	SA CA ON	Ne Die Nie		a na	00	. 89	1	00
~	Redo)	Ctrl+Y									-	ĺ
DE V	~					101		×					
esic 🧖	Cut	Layers	Ctri+X										
ncide	Copy	Design						-					
Refer	Copy	/ Layers	Ctrl+C										
T	Copy	/ Thicknes	ses 🕨	anti-re-	Estimation	Optical	Dhusiaal						
B	Paste	9	Ctrl+V	dex	Coefficient	Thickness	Thickness (r	im)					
+	Paste	e Design		00000	0 00000	(FWUT)		_					
	Paste	e Thicknes	ses 🕨	.38542	0.00000	0.25000000	92	2.03					
	Paste	e Column	5	.66574	0.00000	0.25000000	76	5.54					
	Inco	+ 1 august		1.52083	0.00000			-11					
╡┖	Inser	t Layer						-11					
	Dele	te Layer											
-	Reve	rse Layers		<u> </u>				-11					
+	Reve	rse Desigr	n					-11					
—	-	-											
HLH	Form	nula				0.50000000	168	3.57					
		Decian1					G						
	EC.	.) o											
	De	sign Loi	ntext <u>N</u> o	ites						_			
	Inc	ident Angle	(deg)	0.00	00					-11	-	18.17	
ert la	Re	rerence wa	avelength (r	nmj 510.0	00					_	-	INS	>
100	_												
		1			Refractive	Extinction	Optical	Pł	nysical				
		Layer	Mate	erial	Refractive Index	Extinction Coefficient	Optical Thickness (FW0T)	Pł Thick	nysical ness (n	m)			
		Layer Medium	Mati	erial	Refractive Index 1.00000	Extinction Coefficient 0.00000	Optical Thickness (FW0T)	Pł Thick	nysical ness (n	m)			
		Layer Medium	Mate Air MgF2	erial	Refractive Index 1.00000 1.30542	Extinction Coefficient 0.00000 0.00000	Optical Thickness (FWOT)	Pł Thick	nysical ness (n 92	m)		7	
		Layer Medium 1 2	Mate Air MgF2 Na3AlF6	erial	Refractive Index 1.00000 1.30542 1.35000	Extinction Coefficient 0.00000 0.00000 0.00000	Optical Thickness (FWOT) 0.25000000 0.00000000	Pł Thick	nysical ness (n 92 0	m)			
		Layer Medium 1 2 3 Substrate	Mate Air MgF2 Na3AIF6 AI203 Glass	erial	Refractive Index 1.00000 1.38542 1.35000 1.66574 1.52083	Extinction Coefficient 0.00000 0.00000 0.00000 0.00000 0.00000	Optical Thickness (FWOT) 0.25000000 0.00000000 0.25000000	Pł Thick	nysical ness (n 92 78	m) .00 .00]	
		Layer Medium 1 2 3 Substrate	Mati MgF2 Na3AlF6 Al203 Glass	erial	Refractive Index 1.00000 1.38542 1.35000 1.66574 1.52083	Extinction Coefficient 0.00000 0.00000 0.00000 0.00000 0.00000	Optical Thickness (FW0T) 0.25000000 0.00000000 0.25000000	Ph Thick	nysical ness (n 92 92 76	m) .83 .00]	
		Layer Medium 1 2 3 Substrate	Mati MgF2 Na3AIF6 AI2O3 Glass	erial	Refractive Index 1.00000 1.30542 1.35000 1.66574 1.52083	Extinction Coefficient 0.00000 0.00000 0.00000 0.00000	Optical Thickness (FWOT) 0.25000000 0.00000000 0.25000000	Pł Thick	nysical ness (n 92 92 70 70	m) 83]	
		Layer Medium 1 2 3 Substrate	Mati MgF2 Na3AIF6 Ai203 Glass	erial	Refractive Index 1.00000 1.38542 1.35000 1.66574 1.52083	Extinction Coefficient 0.00000 0.00000 0.00000 0.00000	Optical Thickness (FWOT) 0.25000000 0.00000000 0.25000000	Pł Thick	nysical ness (n 92 70 70	m) .63 .54]	
		Layer Medium 1 2 3 Substrate	Mat MgF2 Na3AIF6 Al2O3 Glass	erial	Refractive Index 1.00000 1.30542 1.35000 1.66574 1.52083	Extinction Coefficient 0.00000 0.00000 0.00000 0.00000	Optical Thickness (FWOT) 0.25000000 0.00000000 0.25000000	Pł Thick	nysical ness (n 92 76	m)]	
		Layer Medium 1 2 3 Substrate	Mati MgF2 Na3AlF6 Al203 Glass	erial	Refractive Index 1.00000 1.38542 1.35000 1.66574 1.52083	Extinction Coefficient 0.00000 0.00000 0.00000 0.00000	Optical Thickness (FWOT) 0.25000000 0.00000000 0.25000000	Pł Thick	nysical ness (n 92 0 76	m) 89 54]	

한 Layer가 삽입됨

Desid	an1				-]		
ign] <u>C</u> or	itext <u>N</u> otes							
dent	Angle	(deg) 0.0	0						
ereno	ce Wa	velength (nm) 510).00						
La	ayer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)			
М	edium	Air	1.00000	0.00000					
1	1	MgF2	1.38542	0.00000	0.25000000	92.03			
	2	Na3AIF6	1.35000	0.00000	0.00000000	0.00			
	3	AI203	1.66574	0.00000	0.25000000	76.54			
Sub	ostrate	Glass	1.52083	0.00000					
_		-							
					0.50000000	168.57			
_	_								

마우스로 클릭 하여 "OVER"로 변환

nci Ref	dent Angle erence Wa	(deg) 0.1 velength (nm) 51	00 0.00			
	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FW0T)	Physical Thickness (nm)
	Medium	Air	1.00000	0.00000		
	1	MgF2	1.38542	0.00000	0.25000000	92.0
	2	Na3AIF6	1.35000	0.00000	0.00000000	0.0
	3	Al203	- 1.66574	0.00000	0.25000000	76.5
	Substrate	Glass	1.52083	0.00000		
-					0.50000000	168.5

삽입 Layer 선택

be Essential Macleod

File	Edit	Parameters Perform	nance	Lock/Link	Tools Opti	ons Window H
D ž	2 5	Undo Ctrl+Z Redo Ctrl+Y	▲.	99	SP CP OH	Ne Diệ Nẹ .
Desig	*	Cut Ctrl+X Copy Design Copy Ctrl+C				
Ī	2	Copy Thicknesses Paste Ctrl+V Pacto Docion	active dex	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)
		Paste Design Paste Thicknesses Paste Columns	.00000 1.38542 1.35000	0.00000	0.25000000 0.00000000 0.25000000	92.03 0.00 76.54
É.		Insert Layers	.52083	0.00000		
		Delete Layers				
		Reverse Layers Reverse Design				
	HLH	Formula Generate Rugate			0.50000000	168.57

6 + 1	Design1					-	
De	sign <u>C</u> or	ntext) <u>N</u> otes)				
Inci Ref	dent Angle erence Wa	(deg) velength (nm)	0.00 510.	00			
	Layer	Material	ĺ.	Refractive	Extinction	Optical Thickness	Physical
_	Medium	Air	-	. 📴 Insert La	ayers		×
	1	MgF2]			OK
	2	Na3AIF6		Number	of Layers to Ir	nser 5	
•	3	Al203	-				Cancel 54
	Substrate	Glass					
_							
_							
				0		0.50000000	168.57

추가 Layer 수 입력 후, OK

Design1					- • •					
Design Cor	ntext <u>N</u> otes									
Incident Angle	(deg) 0.00									
Reference Wavelength (nm) 510.00										
Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)					
Medium	Air	1.00000	0.00000							
1	MgF2	1.38542	0.00000	0.25000000	92.03					
2	Na3AlF6	1.35000	0.00000	0.00000000	0.00					
3	Na3AlF6 🚽	1.35000	0.00000	0.00000000	0.00					
4	Na3AIF6	1.35000	0.00000	0.00000000	0.00					
5	Na3AlF6	1.35000	0.00000	0.00000000	0.00					
6	Na3AlF6	1.35000	0.00000	0.00000000	0.00					
7	Na3AlF6	1.35000	0.00000	0.00000000	0.00					
8	Al203	1.66574	0.00000	0.25000000	76.54					
Substrate	Glass	1.52083	0.00000							
				0.50000000	168.57					
					2					

5 Layers가 삽입됨

2) Insert Plot

File > New > Design

₽+ 1	twolayerco	pating					- • ×
Des	sign) <u>C</u> or	ntext <u>N</u> otes)				
Inci Ref	dent Angle erence Wa	(deg) velength (nm)	0.00 510.00	İ			
	Layer	Material		Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)
	Medium	Air		1.00000	0.00000		
	1	Na3AIF6		1.35000	0.00000	0.25000000	94.44
▶	Substrate	Glass		1.52083	0.00000		
						0.25000000	94.44

Options > General..> Windows

File Edit Parameters Performance Lock/Link Tools Options Window Help V	📴 Essential Macleod	- E
* *	File Edit Parameters Performance Lock/Link Tools Options Window Help	
Design Context Notes Incident Angle (deg) 0.00 Reference Wavelength (nm) 510.00 Layer Essential Macleod Options Active Plot Legacy Data Dubervers Substrate Glass Data Sources Windows Plotting Cone Designs Cancel Prompt to save old Plots and Tables before closing V Keep old Plots and Tables displayed	🗋 💐 🛦 📾 🛍 🗢 🍹 Deb 254 📾 📾 🗣 🏶 🖡 🗰 🏶 🗛 🖡 🦓 🗛 👘 🕼 🖓 De De Seb Ceb OH Ne De Ne 🖡 🔒 🦄	
Determine Later Incident Angle (deg) 0.00 Reference Wavelength (rm) 510.00 Medium Air Active Plot Legacy Medium Air Update Color Pinit JPEG 3D Plot Data Sources Windows Plotting Cone Data Sources Plotting Cone Designs V Cascading Close Prompt to save old Plots and Tables before closing V V Keep old Plots and Tables displayed V8.64 V	En twolayercoating	
Essential Macleod Options Active Plot Legacy Targets Random Observers Sources CPI Update Color Print JPEG 3D Plot Cancel Cancel Conce Conce	Incident Angle (deg) 0.00 Reference Wavelength (nm) 510.00	
Medium Air Targets Random Observers Sources CRI OK INa3AIF Update Color Print JPEG 3D Plot Cancel Image: Color Substrate Glass Data Sources Windows Plotting Cone Designs Image: Color Print JPEG 3D Plot Cancel Image: Color Image: Color Print JPEG 3D Plot Cancel Image: Color Image: Color Print JPEG 3D Plot Cancel Image: Color Image: Color Print JPEG Designs Image: Color Im	Layer N Active Plot Legacy	
Substrate Glass Data Sources Windows Plotting Cone Designs Image: Cone Desin	Medium Air Targets Random Observers Sources CRI OK	l
Image: Construction of the second	Substrate Glass Data Sources Windows Plotting Cone Designs Cancel	
98.61	Cascading Close Compt to save old Plots and Tables before closing Keep old Plots and Tables displayed	
08.5	98.04	

E E	ssential N	lacleod					
File	Edit	Parameters	Performance	.ock/Link	Tools Opt	tions Window	Hel
	× X	Perform	ance	III 🕩 🍭	💊 🗸 💧	q 🤹 💿 🖟	SP
Des Inci Refe	wolayen ign) <u>C</u> o dent Angle erence Wa	(deg) vielength (nm)	ormance ecification 0.00 510.00				
	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FW0T)	Physical Thickness (nm)	
	Medium	Air	1.00000	0.00000			
	1	Na3AIF6	- Har hundressen		144	ille de la companya d	

Unzuntai Axis	Vertical Axis	2nd Vertical As	kis			
Wavelength (nr	1	-				<u>0</u> K
in droiding in (ini	,					Plot
Automatic Scale	I ∨	_				Plot Over
	1/00	_				Active Plot
Minimum Value	400	_				Active Flot
Interval for Plot	50					<u>I</u> able
terval for Table	20					Cancel
Layer Number	1	_				
Performance Pa	,	I I MOKROSS. 1				×
Performance Pa orizontal Axis	arameters /ertical Axis	2nd Vertical Axis				×
Performance Pa lorizontal Axis	arameters /ertical Axis	2nd Vertical Axis	Plot Targets			×
Performance Pa lorizontal Axis V Reflectance Magn utomatic Scale V	arameters /ertical Axis	2nd Vertical Axis	Plot Targets]	DK Plot Plot Over	×
Performance Pa lorizontal Axis V Reflectance Magn utomatic Scale V Maximum Value	arameters /ertical Axis	2nd Vertical Axis) Add to Label Context: Derivative	Plot Targets	Add to Label	<u>Q</u> K <u>Plot</u> Plot O <u>v</u> er	
Performance Pa Iorizontal Axis \ Reflectance Magn Automatic Scale Maximum Value Minimum Value	arameters /ertical Axis itude (%)	2nd Vertical Axis) Add to Label Context: Derivative Incident Angle (deg)	Plot Targets Normal	Add to Label	<u>D</u> K <u>Plot</u> Plot O <u>v</u> er <u>A</u> ctive Plot	
Performance Pa Iorizontal Axis V Reflectance Magn automatic Scale V Maximum Value 1 Minimum Value 0 Interval for Plot 2	arameters /ertical Axis itude (%) 00 00 00	2nd Vertical Axis) Add to Label Context: Derivative Incident Angle (deg) Wavelength (nm)	Plot Targets Normal ▼ 0 0 0.00 510.00	Add to Label Add to Label Add to Label	<u>D</u> K <u>Plot</u> <u>Active</u> Plot <u>I</u> able	
Performance Pa Iorizontal Axis V Reflectance Magn Automatic Scale V Maximum Value 1 Minimum Value 0 Interval for Plot 2 Polarization P V S V	arameters /ertical Axis itude (%) 00 0 Mean	2nd Vertical Axis) Add to Label Context: Derivative Incident Angle (deg) Wavelength (nm) Temperature Offset (deg C):	Plot Targets Normal ▼ 0 0 510.00 0	Add to Label Add to Label Add to Label Add to Label Add to Label	<u>D</u> K <u>Plot</u> <u>Active</u> Plot <u>Iable</u> <u>Cancel</u>	

ALT Key를 누른 상태에서 마우스로 영역 선택 > 좌표 값이 표시 됨.

File > New > Design

₽	Design2					- • •			
Des	sign <u>C</u> or	ntext <u>) N</u> otes)							
Inci	dent Angle	(deg) 0.00							
Ref	erence Wa	velength (nm) 510.0	0						
	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)			
Ę	Medium	Air	1.00000	0.00000	0.05000000	02.02			
	Substrate	Glass	1.52083	0.00000	0.23000000	32.03			
	-								
								Daramo	ators > Porformanco
\square				0	0.25000000	92.03			
ł	Horizontal	Axis Vertical	Axis 2n	d Vertical Ax	is)				×
I	Reflectar	nce Magnitude (%)	•	Add to Labe	el 🗆 P	lot Targets			<u>OK</u>
	Automatic	Scale 🔽		Con	tout Iu		٨٩٩	امام ا	<u> </u>
	Maximum	Value 100			Norr		Aug		Plot Over
	Minimum	Value 0		Deriv	ative 0		Add	to Label	Active Plot
	Interval f	or Plot 20	In	wavelengt	e (deg) 0.00		Add	to Label	Iable
7		- * +	27	-			T HURS	abal	Cancel
	🛃 Design2	: Reflectance						abei	
			Design	12: Reflectan	ce				
-	Refl	ectance (%)							
	^{2.0} [-		
1	1.9		·····				:		
1	1.8	f	·····			/.			
1	1.7		· · · · · · · · · · · · · · · · · · ·				-		
	1.6				·····		÷		
	1.5		·····				:		
	1.4						-		
	1.3						÷		
	400)	500	1 1 4	600	7	00		
			Wa	ivelength (nm)					
		디지.	크라식 v	vww.thin	film.co.k	r 무단 복	사 시	나용 금	지

마우스 위치를 Graph 놓은 후, 더블 클릭

Edit Trace	>
Trace	Close
Yaxis: @Y1 CY2	Next Trace
Label	Provinue Trans
Line Style Pattern: Solid Width: 3 Color:	
Symbol Style Shape: DiagonalCross	

마우스를 Graph 화면에 놓고 더블 클릭

Chartarea	PlotArea	ChartLabels View3D Markers	AlarmZones
Control 4	Axes	ChartGroups ChartStyles Title	s Legend
	Ge	Anchor: South Orientation Horizontal South Morizontal South	or Fon(🖍 🕩

Control	PlotAr Axes	rea Chart ChartGr	Labels V oups C	iew3D N hartStyles	/larkers	AlarmZones Legend
		General T	itle Locati	on Border	Interior	Fon
		Text:	Antirefl	ection Coat	ing	

Save As "Plot 파일 저장

Plot File로 저장됨

File > New > Design

<u>)</u> es	i gn <u>C</u> on dent Angle	(dea)	0			
Refe	erence Wa	velength (nm) 510).00			
	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)
>	Medium	Air	1.00000	0.00000		
	1	MgF2	1.38542	0.00000	0.25000000	92.0
	2	AI203	1.66574	0.00000	0.25000000	76.5
_	Substrate	Glass	1.52083	0.00000		
_			_			
-						
-						
_						
_						
_						
-						
-			-			
_						

Plot을 한 다음

Label, Legend 등을 전과 같이 동일 하게 편집하여 저장

Single Layer Graph를 마우스로 드래그하여 TwoLayer Graph로 이동

두 개의 Graph가 보여짐,,, 같은 방법으로 3,4개도 삽입 가능