프로그램 설계 종합 (예)

Long-Wave-Pass Filter

Material 주비

1. Cement : 그리 중요하지 안으므로 간단히 無 Dispersion에 index of 1.55 신규로 만듭니다.

2. N-BK7는 Material Folder중 Schott 2004 폴더, OG 570b,OG570은

Schott Filter 폴더에서 Import 기능으로 불러옵니다.

Design File 만들기

i g, F	ormula									×
	Symbol	Material	Optical Thickness	Physical Thickness (nm)	Packing Density	Lock	Link	Void Material	Void Density	
	L	SiO2	0.25000000		1.00000	No	0	Air	0.00000	[Cancel]
	Н	Ta205	0.25000000		1.00000	No	0	Air	0.0000	
*										
<u>F</u> orr	nula:									
Med	lium									
THL	.)^17 H									A
(* · · -										
		ſ	1 11 1 1							-
			(HL)							
										Substrate

프로그램 메뉴에서, File > Design.

프로그램 메뉴에서, Edit > Formula.

BK 7 : substrate , Cement : Incident medium.

Design Cor	Design Context Notes							
Incident Angle (deg)								
Beference Wa	Reference Wavelength (nm) 510.00							
Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)				
Medium	Cement 🗾 💌	1.55000	0.00000					
1	Ta205	2.14455	0.00000	0.25000000				
2	SiO2	1.46180	0.00000	0.25000000				
3	Ta205	2.14455	0.00000	0.25000000				
4	SiO2	1.46180	0.00000	0.25000000				
5	Ta205	2.14455	0.00000	0.25000000				
6	SiO2	1.46180	0.00000	0.25000000				
7	Ta205	2.14455	0.00000	0.25000000				
8	SiO2	1.46180	0.00000	0.25000000				
9	Ta205	2.14455	0.00000	0.25000000				
10	Si02	1.46180	0.00000	0.25000000				
11	Ta205	2.14455	0.00000	0.25000000				
12	SiO2	1.46180	0.00000	0.25000000				
13	Ta205	2.14455	0.00000	0.25000000				
14	SiO2	1.46180	0.00000	0.25000000				
15	Ta205	2.14455	0.00000	0.25000000				
16	SiO2	1.46180	0.00000	0.25000000				
17	Ta205	2.14455	0.00000	0.25000000				
18	SiO2	1.46180	0.00000	0.25000000				
19	Ta205	2.14455	0.00000	0.25000000				
20	SiO2	1.46180	0.00000	0.25000000				
				8.75000000 -				

					8.56659345	2541.12	
-	Substrate	N-BK7	1.52016	0.00001			
	35	Ta205	2.14341	0.00000	0.17234159	42.01	No
	34	Si02	1.46121	0.00000	0.18715251	66.92	No
	33	Ta205	2.14341	0.00000	0.25256828	61.57	No
	32	Si02	1.46121	0.00000	0.27060155	96.76	No
	31	Ta205	2.14341	0.00000	0.20335927	49.57	No
	30	SiO2	1.46121	0.00000	0.25000000	89.40	Yes
	29	Ta205	2.14341	0.00000	0.25000000	60.94	Yes
	28	SiO2	1.46121	0.00000	0.25000000	89.40	Yes
	27	Ta205	2.14341	0.00000	0.25000000	60.94	Yes
	26	SiO2	1.46121	0.00000	0.25000000	89.40	Yes
	25	Ta205	2.14341	0.00000	0.25000000	60.94	Yes
	24	SiO2	1.46121	0.00000	0.25000000	89.40	Yes
	23	Ta205	2.14341	0.00000	0.25000000	60.94	Yes
	22	Si02	1.46121	0.00000	0.25000000	89.40	Yes
	21	Ta205	2.14341	0.00000	0.25000000	60.94	Yes

Getting the Correct Reference Wavelength

프로그램 메뉴에서, File > Performance > Active Plot.

프로그램 메뉴에서, Add > reference wavelength,

÷.										
<u>D</u> e	Design Context Notes									
Inc	Incident Angle (deg) 0.00									
Re	Reference Wavelength (nm) 510.00									
	Layer	Material	Refractive Index	Extinction Coefficient	Uptical A Thickness (FWOT)					
►	Medium	Cement 🗾	1.55000	0.00000						
	1	Ta205	2.14455	0.00000	0.25000000					
	2	SiO2	1.46180	0.00000	0.25000000					
	3	Ta205	2.14455	0.00000	0.25000000					
	4	SiO2	1.46180	0.00000	0.25000000					
	5	Ta205	2.14455	0.00000	0.25000000					
	6	SiO2	1.46180	0.00000	0.25000000					
	7	Ta205	2.14455	0.00000	0.25000000					
	8	SiO2	1.46180	0.00000	0.25000000					
	9	Ta205	2.14455	0.00000	0.25000000					
	10	Si02	1.46180	0.00000	0.25000000					
	11	Ta205	2.14455	0.00000	0.25000000					
	12	SiO2	1.46180	0.00000	0.25000000					
	13	Ta205	2.14455	0.00000	0.25000000					
	14	SiO2	1.46180	0.00000	0.25000000					
	15	Ta205	2.14455	0.00000	0.25000000					
	16	SiO2	1.46180	0.00000	0.25000000					
	17	Ta205	2.14455	0.00000	0.25000000					
	18	Si02	1.46180	0.00000	0.25000000					
	19	Ta205	2.14455	0.00000	0.25000000					
	20	SiO2	1.46180	0.00000	0.25000000					
					8.75000000 💌					

Edge가 600nm 될 때까지 reference	
wavelength 조정하면 약 522.50nm	
됩니다.	

÷.	Design2									
Design Context Notes										
Inc Rel	Incident Angle (deg) 0.00 Reference Wavelength (nm) 522.50									
	Layer	Material		Refractive Index	Extinction Coefficier					
	Medium	cement	- 10.25	1.55000	0.000					
	1	Ta205	-	2.14341	0.000					
	2	SiO2		1.46121	0.000					
	3	Ta205		2.14341	0.000					
	4	SiO2		1.46121	0.000					
	5	Ta205		2.14341	0.000					

Setting Up for Refinement

프로그램 메뉴에서, Parameters > refinement > Targets

0.0	induid color	I moranovo I		
	Wavelength (nm)	Required Value	Target Tolerance	Туре
	600.00	100.000000	1.000000	Transmittance (%)
	601.00	100.000000	1.000000	Transmittance (%)
	602.00	100.000000	1.000000	Transmittance (%)
	603.00	100.000000	1.000000	Transmittance (%)
	604.00	100.000000	1.000000	Transmittance (%)
	605.00	100.000000	1.000000	Transmittance (%)
	606.00	100.000000	1.000000	Transmittance (%)
	607.00	100.000000	1.000000	Transmittance (%)
	608.00	100.000000	1.000000	Transmittance (%)
	609.00	100.000000	1.000000	Transmittance (%)
	610.00	100.000000	1.000000	Transmittance (%)
	611.00	100.000000	1.000000	Transmittance (%)
	612.00	100.000000	1.000000	Transmittance (%)
	613.00	100.000000	1.000000	Transmittance (%)
	614.00	100.000000	1.000000	Transmittance (%)
	615.00	100.000000	1.000000	Transmittance (%)
	616.00	100.000000	1.000000	Transmittance (%)
	617.00	100.000000	1.000000	Transmittance (%)
	618.00	100.000000	1.000000	Transmittance (%)
	619.00	100.000000	1.000000	Transmittance (%)
	620.00	100.000000	1.000000	Transmittance (%)
	621.00	100.000000	1.000000	Transmittance (%)
	622.00	100.000000	1.000000	Transmittance (%)
	623.00	100.000000	1.000000	Transmittance (%)

🕌 L	WP					_ 🗆	×			
<u>D</u> e:	s ign (<u>C</u> on	itext <u>N</u> otes								
Inci	Incident Angle (deg) 0.00									
Ref	Reference Wavelength (nm) 522.50									
	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Lock)			
	Medium	Cement	1.55000	0.00000						
	1	Ta205	2.14341	0.00000	0.25000000	No				
	2	SiO2	1.46121	0.00000	0.25000000	No				
	3	Ta205	2.14341	0.00000	0.25000000	No				
	4	SiO2	1.46121	0.00000	0.25000000	No				
	5	Ta205	2.14341	0.00000	0.25000000	No				
	6	SiO2	1.46121	0.00000	0.25000000	Yes				
	7	Ta205	2.14341	0.00000	0.25000000	Yes				
	8	SiO2	1.46121	0.00000	0.25000000	Yes				
	9	Ta205	2.14341	0.00000	0.25000000	Yes				
	10	SiO2	1.46121	0.00000	0.25000000	Yes				
	11	Ta205	2.14341	0.00000	0.25000000	Yes				
	12	SiO2	1.46121	0.00000	0.25000000	Yes				
	13	Ta205	2.14341	0.00000	0.25000000	Yes				
	14	SiO2	1.46121	0.00000	0.25000000	Yes				
	15	Ta205	2.14341	0.00000	0.25000000	Yes				
	16	Si02	1.46121	0.00000	0.25000000	Yes				
	17	Ta205	2.14341	0.00000	0.25000000	Yes				
	18	SiO2	1.46121	0.00000	0.25000000	Yes				
	19	Ta205	2.14341	0.00000	0.25000000	Yes				
	20	SiO2	1.46121	0.00000	0.25000000	Yes				
	21	Ta205	2.14341	0.00000	0.25000000	Yes				
	22	SiO2	1.46121	0.00000	0.25000000	Yes				
	23	Ta205	2.14341	0.00000	0.25000000	Yes				
	24	SiO2	1.46121	0.00000	0.25000000	Yes				
	25	T-005	214241	0.00000	0.25000000	V				
					8.75000000					

Design file이 선택된 상태에서

프로그램 메뉴에서, lock/Link > Lock All

상위 5 Layer와 하위 5 Layer만 마우스로 클릭하여 "Lock No"로 변경

Ripple 제거를 위한 Refinement

프로그램 메뉴에서, Parameters > Refinement > Simplex

🐂 Simplex Parameters	×
Refine Thicknesses 🔽 Refine Index	OK Refine
Thicknesses Upper Thickness Limit: 0.75 Lower Thickness Limit: 0 Starting Thickness Increment: 0.03 Index Upper Density Limit: 1.2 Lower Density Limit: 1.2 Lower Density Limit: 0.8 Starting Density Increment: 0.1 Common Scaling: 💌	General Number of Iterations: 20000 Plot Frequency: 10 Recycle Interval: 500 Merit Function Merit Function Power: 2 Limiting Range For Merit Function: .0000001
LWP: Simplex Progress	
Start Figure of Merit: 501.7301512 Iteration: 180 Figure of Merit Range: 12.023997% to 13 A Figure of Merit: 12.4292244 B Figure of Merit: 13.6244307	Pause
Transmittance (%) 100 80 40 40 40 400 500 500 500	커브가나타남
400 300 000	Wavelength (nm)

Performance of the Long Wave Pass Filter

The Antireflection Coating

<u>-</u>	🚔 AR-4L								
De	Design Context Notes								
Incident Angle (deg) 0.00 Reference Wavelength (nm) 510.00									
	Layer	Material		Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)			
	Medium	Air	T	1.00000	0.00000				
	1	SiO2		1.46180	0.00000	0.35773306			
	2	Ta205		2.14455	0.00000	0.37169681			
	3	SiO2		1.46180	0.00000	0.08681442			
	4	Ta205		2.14455	0.00000	0.15405159			
	Substrate	N-BK7		1.52092	0.00001				
						0.97029588			

프로그램 메뉴에서, Tools > Analysis > Admittance

Complete Performance Modeled by Stack

프로그램 메뉴에서, File > New > Stack

ill I									
<u>S</u> ta	Stack Notes								
	Medium Type	Medium Material	Medium Substrate	Medium Thickness (mm)	Coating File	Coating Direction	Coating Locked		
	Incident	Air							
	Parallel	OG 570 b	OG 570	3.000	ar-41.dds	Forward	No		
	Parallel	Cement	Lossless	1.000	None				
	Parallel	N-BK7	N-BK7 25mm	1.000	lwp.dds	Forward	No		
	Emergent	Air			ar-41.dds	Reversed	No		

Stack을 이용하여 AR Coating과 조합. ※ Stack과 선택사항인 vStack 차이.

	🛄 vStack 📃 🗖 🔀									
<u>v</u> S	<u>v</u> Stack Notes ≫ vStack Data 입력 창									
Be	am Angle (deg)	0.00								
Ca	Iculation Waveleng	gth (nm) 510.00	A	A						
	Front Material	Back Material	Surface Angle	Transfer Mode	Coating File	Coating Direction	Coating Locked			
▶	Air 💌	Glass	0.00	Transmit	None					
		► : Stack I	├ 다른 D	Data 입력 항목						

Front Material specifies the material in which the light is incident on the surface.

Back Material specifies the material on the other side of the surface from the front material.

Surface Angle specifies the angle that the surface normal makes with the reference direction

Transfer Mode specifies the component of light that is transferred from one surface to the next. This parameter has seven values:

Transmit: The transmitted portion of the beam is propagated to the next surface and the reflected beam is discarded.

Reflect: The reflected portion of the beam is propagated to the next surface and the transmitted beam is discarded.

Perfect Reflect: This special mode reflects 100% of the beam and propagates it to the next surface.

Rotate 0: This special mode rotates the beam 90 degrees about its axis and propagates it to the next surface.

Rotate 90: This special mode has no effect on the beam and propagates it to the next surface. It is included to make it easy to switch off any of the rotations listed below.

Rotate 180: This special mode rotates the beam 180degrees about its axis and propagates it to the next surface.

Rotate -90: This special mode rotates the beam 270 degrees about its axis and propagates it to the next surface.

Perfect Retro: This special mode reflects 100% of the beam back along the direction that it entered and propagates it to the next surface.

제조(생산)를 위한 고려 사항들

RunSheet 와 Simulator를 이용하여 제조(생산)에 대한 검토와 계획을 할 수 있습니다.

1. Machine Configuration

Coating machine, monitoring systems, sources, tooling factors, monitoring chips 등의 세부사항을 설정, 설계에 반영합니다.

2. RunSheet

증착 동안의 layer thickness 제어에 대한 계획을 세우기 위한 monitoring signals을 예측 합니다.

3. Simulator

완성된 RunSheet를 이용하여 errors in tooling factors, wavelength, packing density, temperature 및 signal noise가 포함된 실제 코팅 생산 예측(Simulation)을 합니다.

Machine Configuration

프로그램 메뉴에서, File > New > Machine Configuration

RunSheet를 이용하기 위해서는 Machine Configuration에서 General, Sources와 Monitoring Chips 정보와, 그리고 필요시 Wideband 정보가 필요 합니다. 그 외 입력 정보들은 Simulator에 필요하며 그 값들은 지금 설계한 Edge Filter에 사용, 시험해 보겠습니다. 두께 제어를 위한 optical tooling factors 를 1.2 설정합니다.

E Ma	chine 1					_					
	Packing Density	Errors) Depo	sition Rate Variatio	n .)						
	Wideband	······	Optic	al Tooling Errors		stal Tooling Erro	rs J				
	General			Sources	I M	onitoring Chips					
_ Plar	nt Configuration			Crystal Contr	oller						
	Incident Angl	e 0.0		Thickness S	cale Factor: [0,	.0000001					
D	Deposition Medium Air Thickness Symbol: kÅ										
Mor	nitoring Capability	,		 Dynamic Too	oling Factor —						
	Optical Crystal Reset for each Layer										
	Tooling Scale Factor 0.00000001										
				Tooling	Unit Symbol: 📊	m	L L				
	General			Sources		Monitoring Chip:	s				
	Optical Crystal Deposition Line Cales										
	Joarce	Mate	andi	Factor Fact	or Rate (ni	m/s)					
	Titania	Ta205		1.2000 1.	0000 1.00						
*	Silica	5102		1.2000 1.	0000 1.00						
			Machine 1								
_			Packing	Density Errors	Deposition	Rate Variation)				
			Wie	deband	Optical To	ooling Errors	Crystal Tooling B				
	1		Ge	neral	Sou	urces	Monitoring Ch	nips			
			Name	Material	Substrate	Thickness (mm)	Back Surface				
		-	Glass	Glass	Lossless	1	Untreated	-			
		*						-			
								-			
			-					- U			
					·						

RunSheet

프로그램 메뉴에서, File > New > RunSheet

프로그램 메뉴에서, Edit > Parameters

Default values can then be changed easily by *Global Edit* or manually.

📙 E	ssent	ial Macleoc	ł			🖷 Runsheet Parameters 🔀 🔀
File	Edit	Runsheet	Tools	Options	Windo	
	Copy Paste	Run Sheet Run Sheet		Ctrl+C ⊂trl+V		Machine: enter\results\Machine 1.mcf Cancel
	Parar	neters				Polarization: P
	Globa	al Edit				Monitor Mode: Transmittance
	Selec	t All Chips				Wavelength Interval: 1
	Inver	t Selection			_	Wavelength Scale Factor: 0000001
~	Set G	iain From On	e Point			Use Previous Extremum 🗖
	Set G	ain From TW		,		One Wavelength per Chip 🗖

Chip	Layer	Source	Material	Crystal Thickness (kA)	Monitor Wavelength (nm)	Monitor Bandwidth (nm)	Quarterwave Optical Thickness on Chip	Monitor Spectrum	Simulation Spectrum	Zero Offset	Gain	Monitor Type
	20	Silica	SiO2	0.893954	510.00	10.00				0.000	1.000	Optical
	21	Titania	Ta205	0.609426	510.00	10.00				0.000	1.000	Optical
	22	Silica	SiO2	0.893954	510.00	10.00				0.000	1.000	Optical
	23	Titania	Ta205	0.609426	510.00	10.00				0.000	1.000	Optical
	24	Silica	SiO2	0.893954	510.00	10.00			0	0.000	1.000	Optical
	25	Titania	Ta205	0.609426	510.00	10.00				0.000	1.000	Optical
	26	Silica	SiO2	0.893954	510.00	10.00				0.000	1.000	Optical
	27	Titania	Ta205	0.609426	510.00	10.00				0.000	1.000	Optical
	28	Silica	SiO2	0.893954	510.00	10.00				0.000	1.000	Optical
	29	Titania	Ta205	0.609426	510.00	10.00			-	0.000	1.000	Optical
	30	Silica	SiO2	0.893954	510.00	10.00				0.000	1.000	Optical
	31	Titania	Ta205	0.529007	510.00	10.00				0.000	1.000	Optical
	,32	Silica	Sin2	1.052627	510.00	10.00				0.000	1 000	Ontical

에센설 맥클라우드 프로그램 힌글 매뉴얼

프로그램 메뉴에서, *RunSheet > Calculate*

Runs	RunSheet1																					
C	hip	Layer	Source	Material	Crystal Thickness (kÅ)	Monitor Wavelength (nm)	Monitor Bandwidth (nm)	Quarterwave Optical Thickness on Chip	Monitor Spectrum	Simulation Spectrum	Zero Offset	Gain	Monitor Type	Start At	First Maxima	First Minima	Last Maxima	Last Minima	Finish At	Final Swing	Peaks	-
1: G	lass	1	Titania	Ti02	0.223289	500.00	1.00	0.505			0	1	Optical	91.7980					76.2047	16.9865	+1	1
		2	Silica	SiO2	0.937082	500.00	1.00	1.316			0	1	Optical	76.2047	93.8514	74.4274			93.2887	2.8965	↓↑	
		3	Titania	Ti02	0.424921	500.00	1.00	0.962			0	1	Optical	93.2887		41.5628			41.5704	0.0147	Ļ	
		4	Silica	SiO2	0.804786	500.00	1.00	1.130			0	1	Optical	41.5704	67.9001				66.0113	7.1738	1	1
2: G	lass	5	Titania	Ti02	0.642370	500.00	1.00	1.454			0	1	Optical	66.0113		19.3072			32.2773	27.7707	Ļ	1
		6	Silica	SiO2	0.719674	500.00	1.00	1.010			0	1	Optical	32.2773	49.6602				39.2242	60.0361	1	1
		7	Titania	Ti02	0.554994	500.00	1.00	1.256			0	1	Optical	39.2242		14.6080			24.1182	38.6339	Ļ	1
		8	Silica	SiO2	0.881331	500.00	1.00	1.237			0	1	Optical	24.1182	38.9356				24.6664	96.2999	1	1-
3: G	lass	9	Titania	Ti02	0.554994	500.00	1.00	1.256			0	1	Optical	24.6664		14.0321			35.3541	200.5013	Ļ	1
		10	Silica	SiO2	0.881331	500.00	1.00	1.237			0	1	Optical	35.3541	46.6087				26.7761	176.2172	1	1
		11	Titania	Ti02	0.554994	500.00	1.00	1.256			0	1	Optical	26.7761		22.8730			74.3369	318.5114	↓ ↓	1
Non	Ionitoring chips은 항상 Titania 시작해서 두 Layer의 Silica를 갖는 경우 입니다.																					

해당 Chip에 마우스를 놓고 클릭하면 Chip 번호가 순서대로 나오게 됩니다.

<u>∧</u> LWPRS <u>R</u> unsheet <u>N</u> otes					Chip, 1.0	Blass를 마	우스로 클	릭하고		
		Chip	Layer	Source	Material	Crystal Thickness (kA)	Monitor Wavelength (nm)	Monitor Bandwidth (nm)	Quarterwave Optical Thickness on Chip	Mi Spe
II	•	1: Glass 📼	1	Titania	Ta205	0.444625	510.00	10.00	0.897	
			2	Silica	SiO2	0.617631	510.00	10.00	0.850	
			3	Titania	Ta205	0.629584	510.00	10.00	1.271	
			4	Silica	SiO2	0.996188	510.00	10.00	1.371	
		2: Glass	5	Titania	Ta205	0.481766	510.00	10.00	0.972	
			6	Silica	SiO2	0.893954	510.00	10.00	1.230	
116			7	Titopio	T-205	0 000420	510.00	10.00	1 220	

프로그램 메뉴에서, RunSheet > Plot one Chip

에센설 맥클라우드 프로그램 힌글 매뉴얼

<u> 1</u>	LWPRS	С	hip, 2.Gla	ss를 마우:	스로 클릭히	하고	
<u>B</u> u	unsheet <u>N</u>	otes					
	Chip	Layer	Source	Material	Crystal Thickness (kA)	Monitor Wavelength (nm)	B.
	1: Glass	1	Titania	Ta205	0.444625	510.00	
- 3		2	Silica	SiO2	0.617631	510.00	
		3	Titania	Ta205	0.629584	510.00	
		4	Silica	SiO2	0.996188	510.00	
•	2: Glass 🖃	5	Titania	Ta205	0.481766	510.00	
		6	Silica	SiO2	0.893954	510.00	
		7	Titania	Ta205	0.609426	510.00	
Ĩ		8	Silica	SiO2	0.893954	510.00	1
		- 0	T0 1	T OOF	0.000.400	E10.00	18

프로그램 메뉴에서, RunSheet > Plot one Chip

Run Sheet 파일은 "File" > "Export" > "CSV File " (a comma-separated variable) 기능으로 엑셀 또는 Note 포맷 파일 등으로 변환 하여 Coating Controller 등 다른 프로그램에서 그대로 활용이 가능 합니다.

Simulator

Simulator를 이용하여 코팅 생산을 시물레이션 하여 모니터링 수행의

유효성 체크를 해 보겠습니다.

😸 Essei	ntial Macleod									
File Ed	t Parameters	Performance	Tools	Options	Window	Help				
New Open Open Open Close	 Material Substrate Function	Ctrl+F12 Sbift+E12	>	 Designation Mate Option Table Stack vStack Subs 						
Save Save Page	As All Setup	F12	-	Oper Mach Run 1 Simu	Operation Machine Configuration Run Sheet Simulator					
Printe Print	r Setup	Shift+Ctr	l+F12				44			
1 C:C 2 C:E 3 C:C 4 C:M	ptatec.omm dge Filter.rs ptatec edge filt lachine 1.mcf	er.rs								
Exit										

Monitoring Simulation

Simulato에서 극점 검파은 최대 또는 최소를 지나가는 규정된 신호 변화에 의해서 되며 부가적인 overshoot 역시 정의 할 수도 있고, 그것이 규정된 신호변화 보다 작은 경우의 Layer는 극점에서 종결 될 수도 있습니다.

Simulator

Optatec			×
Optical Monitor	<u>C</u> rystal Monitor	Calculation	
<u>G</u> eneral	<u>S</u> ignal Errors	Wavelength Errors	
Run Sheet: m File Output Folder: C:\Pro Thermal Profile: 0.0 Number of Runs: 10	s\Thin Film Center\results\Edge Filte ogram Files\Thin Film Center\results\ Stop at Layer:	er.rs	
Par	use at the end of each layer		

Standard deviation for optical signal noise : 1 입력.

Optatec			×
Optical Monitor	<u>C</u> rystal Monitor	Calculation	
<u>G</u> eneral	<u>Signal Errors</u>	Wavelength Errors	
Me. Standard De Wavelength Scale	an Error: 0.0 eviation: 1 e Factor: 0.0000000		
Optatec			×
<u>G</u> eneral	<u>Signal Errors</u>	<u>W</u> avelength Errors	Bun
Optical Monitor	<u>C</u> rystal Monitor	Calculation	
Monitoring: Oversho Overshoot Monitor Minimum Signal O Minimum Ov Maximum Th Minimum Monitoring Th	ot Monitor Only Change (%abs) 4 ershoot (%p-p) 0.01 ickness Ratio 4 ickness Ratio 0.1	Peak Monitor Buffer Size (#samples) 40 Filter Size (#samples) 10 Slope 0 Match Count 5	

Minimum signal change 값은 signal noise의 4배와 같거나 이상.

에센설 맥클라우드 프로그램 힌글 매뉴얼

아래그림 : The signal during the monitoring of the first layer on the first chip

Simulator의 10회 최종결과 목표치 대비 조금 미흡 하므로

Signal Errors에서 standard deviation : 0.4%,

Optical Monitor에서 minimum signal change : 2% 수정한 후 다시 Simulation 하면

거의 완벽한 결과치를 보여주며 보다 더 완벽한 설계를 위해서는 Edge를 600nm로 가게끔 조금 수정 하거나 tooling factor errors 또는 temperature 등의 변화를 주어 다시 Simulation을 하면 됩니다.

Theoretical Performance of the Final Design

