DWDM Assistant

DWDM은 대칭적 주기 방법을 이용하여 Bandpass Filters를 설계하는 툴로 상단 메뉴

" Tools > DWDM Assistant.. "

File Tools Options Help		
 Materials Substrates Browse Materials Library Browse Online Materials Library Load ZEMAX Coating File Substrate n,k & T DWDM Assistant 	Tab 방식으로 구성되는데 4개의 Tab Bandpass Filter의 처리를 위한 사양, 제약조건을 입력하고, "Generate 설계를 시작하며 그 결과를 "Results"(보여 줍니다.	을 이용 e″하면 게서
🕞 DWDM Assistant		- 8 %
Specification Materials Limits Sort Results		
Center Wavelength (nm) 1550 Incident Angle Polarization: Mean P S Minimum Bandwidth (nm) 0.4	e (deg) 0 at -25 dB at dB at dB over 0.4 nm	<u>G</u> enerate <u>H</u> alt <u>R</u> esort Load <u>S</u> ave
Minimum bandwidth : 필터의 가장 바깥쪽 I 일반적으로 특정한 전송레벨(예 -0.3dB 또는 그 최소 대역폭 값(minimum bandwidth val 특정한 전송레벨에서 각 maximum bandwidth bandwidth limits가 있는 사양(specification)을 만약 3개의 maximum bandwidth 사양보다 3 Bandwidth 사양은 고라으로 높아들니다	피크에 있는 대역폭 (bandwidth). 0.5dB)에 규정된 bandwidth는 ue) 보다 조금 넓게됩니다. th를 규정하여 복수의 을 입력 가능하도록 합니다. 작은 것이 있다면 나머지	

리플 (Ripple)은 최소 bandwidth보다 좀더 좁은 범위에 리플이 있는 필터를 원한다면 최소 bandwidth와는 다른 너비를 줄 수 있습니다. 그 리플은 리플 대역폭에서 가장 낮고, 높은 사이의 차이로 측정되며 리플 대역폭은 항상 중심파장에 중앙에 위치합니다.

Copyright ⓒ 디지크라식 http://www.rf.co.kr

- DWDM Assistant		
Specification Materials	Limits Sort Results	1 m m
		<u>G</u> enerate
Medium Air		Halt
Material 1 SiO2	 Time per Quarterwave 1 10 	
Material 2 Ta205	Time per Quarterwave 2	<u>R</u> esort
Substrate Glass	•	Load
		<u>Save</u>

2. Materials

사용되는 Materials 의 상세내용 입력.

각 material 1와 material 2의 ¼파(quarterwave)에 대한 임의의 시간 단위로 증착 시간을 표시하며 이 속도들은 해당 예비 디자인에 대한 총 증착 시간을 계산하는데 사용 됩니다. 그 결과는 증착 시간에 따라 분리되어 집니다.

⊨ DWDM Assistant		
Specification Materials Limits Sort	Results	
		<u>G</u> enerate
Minimum Filter Order 1	Maximum Filter Order 8	<u> </u>
Minimum Layers in 1 Reflector	Maximum Layers in 30 Reflector	Resort
Minimum Number of Repetitions	Maximum Number of 8 Repetitions	Load
🗖 Always Reduce Ripple	Conly Keep Best Design After Ripple Reduction	<u>Save</u>

3. Limits

Minimum Filter Order와 Maximum Filter Order는 Bandpass디자인 가장 큰 공동(cavity)의 크기를 정합니다. 공동의 크기는 Filter Order × one half-wave thickness가 되며 고 굴절 또는 저 굴절 물질로 부터 만들어 질 수 있습니다.

Minimum Layers in Reflector와 Maximum Layers in Reflector는 공동의 양면 reflector로 형성된 필터 안에 있는 각 공동 사이의 레이어의 수 범위를 관리 합니다.

Minimum Number of Repetitions과 Maximum Number of Repetitions은 중앙 대칭 주기의 반복 수를 정하며 반복 수가 많을수록 필터의 면은 더 가파르게 됩니다.

Copyright ⓒ 디지크라식 http://www.rf.co.kr

Always Reduce Ripple : 디자인의 리플 처리와 무관, 체크를 안하면 디자인이 Rresults table에 반영됨.

DWDM Assistant는 항상 리플을 개선하기 위해 적합한 구조를 갖도록 후보 디자인들을 여러 개 만드는데, 이를 행할 경우 리플 사양에 충분히 맞게 개선된 복수의 디자인 파일이 생기게 됩니다.

Only Keep Best Design After Ripple Reduction : 리플 감소 후 나온 최상의 디자인만 보호되어 Results에 보관하며 체크를 안 하면 리플 사양을 맞추기 위하여 리플 감소 동안 발생된 모든 디자인을 Results에 보관 합니다.

DWDM Assistant Specification Materials Limits Sort	Results		Generale
Sort byTotal Thicknessthen bythen bythen bythen byTotal Thicknessthen byTotal H ThicknessTotal L ThicknessDeposition TimeMinimum Bandwidth (Mean)Minimum Bandwidth (P)	Ascending Ascending	- 분류 방향 설정	Halt <u>R</u> esort Load <u>S</u> ave

4. Sort

Sort는 Results에 디자인이 어떻게 분류되어지어야 하는지를 규정하는 것으로 최대 4개의 변수(패래미터)로 분류 될 수 있습니다.

Sort by : 분류 패러미터 지정,

Then by : 추가 패러미터 지정

4. Results

Generate 를 하면 Results 창이 나타납니다.

Resort : 한 번 Generate된 디자인을 Result에서 재 분류가 가능한데 Sorting 패래미터를 변경한 후 Resort 버튼을 클릭하면 됩니다.

Copyright ⓒ 디지크라식 http://www.rf.co.kr

pee	fication 1	Materials	Limits So	ort Result	s						
	Total Thickness	Total H Thickness	Total L Thickness	Deposition Time	Minimum Bandwidth (Mean)	Maximum Bandwidth (Mean)	Ripple (Mean)	Delta Ripple (Mean)	Maximum Order	<u>G</u> enerate	
·L	76.75	37.50	39.25	3370.00	0.41	0.59	0.225	2.1E00	5	Halt	
Н	81.75	48.00	33.75	3654.00	0.27	0.58	0.286	5.2E-03	5		
L	90.00	42.25	47.75	3938.00	0.50	0.61	0.219	1.0E-02	4	<u>R</u> esort	
Н	91.75	54.00	37.75	4102.00	0.38	0.59	0.127	1.2E-04	8		
L	92.00	40.00	52.00	4000.00	0.42	0.57	0.278	2.8E00	8	Load	
L	94.50	45.00	49.50	4140.00	0.51	0.62	0.299	6.8E-02	2	<u>L</u> oad	
Η	100.50	54.00	46.50	4452.00	0.48	0.62	0.262	2.6E-02	4	Course	
L	102.00	36.00	66.00	4368.00	0.43	0.64	0.263	9.5E-06	7	<u>S</u> ave	
Н	111.00	71.25	39.75	5010.00	0.48	0.61	0.159	2.5E-04	7		

가장 왼쪽 컬럼(제목없는 부문) : 주 공동(main cavities) 의 굴절율 H: 고 굴절 물질, L : 저 굴절 물질.

Delta Ripple : Tooling factor의 변화에 대한 디자인의 감도를 표시하는 것으로 The thickness of the L layers는 조금 두껍게 the thickness of the H layers는 조금 얇게 만들어 지며 새로운 디자인과 원래 디자인의 리플 차이를 나타내는데 값이 작을 수록 감도가 더 낮음을 의미합니다.

최 좌측 화살표를 이용 하나의 줄(Row)를 마우스로 선택 (하이라이트), 해당 줄을 더블 클릭하면 해당 디자인 내용의 창이 나타 납니다.

			Total Thickness	Total H Thickness	Total L Thickness	Deposition Time	Minimum Bandwidth (Mean)	Maximum Bandwidth (Mean)	Ripple (Mean)	Delta Ripple (Mean)	Maximum Order	<u>G</u> enerate
		L	76.75	37.50	39.25	3370.00	0.41	0.59	0.225	2.1E00	5	브레
		Н	81.75	48.00	33.75	3654.00	0.27	0.58	0.286	5.2E-03	5	
-	$\mathbf{\cdot}$	L	90.00	42.25	47.75	3938.00	0.50	0.61	0.219	1.0E-02	4	<u>R</u> esort
		Н	91.75	54.00	37.75	4102.00	0.38	0.59	0.127	1.2E-04	8	
		L	92.00	40.00	52.00	4000.00	0.42	0.57	0.278	2.8E00	8	

DW	/DM Assisti	ant									23	
Speci	fication 📔 I	vlaterials	(2 N)	10.10								
	Total Thickness	Total H Thickness	Des	Design1 ign <u>C</u> on	itext <u> N</u> otes							23
L	76.75	37.50	Incid	dent Angle	(deg) 0.0	0						_
H	81.75	48.00	Refe	erence Wa	velength (nm) 15	50.00						
	90.00 91.75 92.00 94.50	42.25 54.00 40.00 45.00	Π	Layer	Material	Refractive Index	Extinction Coefficient	Optical Thickness (FWOT)	Physical Thickness (nm)	Minimum Packing Density	Maximum Packing Density	•
H	100.50	54.00	Þ	Medium	Air	1.00000	0.00000					1
L	102.00	36.00		1	Ta205	2.10000	0.00000	0.25000000	184.52		L. margan	3
Н	111.00	71.25		2	SiO2	1.44402	2 0.00000	0.25000000	268.35	0.00000	0.00000	Ĵ.
				3	Ta205	2.10000	0.00000	0.25000000	184.52	0.00000	0.00000	ĵ
	-			4	SiO2	1.44402	2 0.00000	0.25000000	268.35	0.00000	0.00000	Ĵ.
-				5	Ta205	2.10000	0.00000	0.25000000	184.52	0.00000	0.00000	Ĵ
-				6	SiO2	1.44402	0.00000	0.25000000	268.35	0.00000	0.00000	J
-	2			7	Ta205	2.10000	0.00000	0.25000000	184.52	0.00000	0.00000	J
-				8	SiO2	1.44402	2 0.00000	0.25000000	268.35	0.00000	0.00000	J
-				9	Ta205	2.10000	0.00000	0.25000000	184.52	0.00000	0.00000	J
				10	SiO2	1 44402		0.25000000	268.35 82439.01	ם החחח ה	0 00000	1.

Copyright ⓒ 디지크라식 http://www.rf.co.kr

AR코팅을 추가하여 전반의 투과 도를 개선된 Passband 결과를 보여 주며 "File > Save "로 저장,

Load 버튼을 이용 해당 디자인 파일을 불러 올 수가 있습니다.

Copyright ⓒ 디지크라식 http://www.rf.co.kr